

BASE REALIGNMENT AND CLOSURE ENVIRONMENTAL SITE SCREENING REPORT

STUDY AREA 30

NAVAL TRAINING CENTER ORLANDO, FLORIDA

UNIT IDENTIFICATION CODE: N65928 CONTRACT NO.: N62467-89-D-0317/107

JUNE 1998

SOUTHERN DIVISION

NAVAL FACILITIES ENGINEERING COMMAND

NORTH CHARLESTON, SOUTH CAROLINA

29418

PRINTED ON RECYCLED PAPER

BASE REALIGNMENT AND CLOSURE ENVIRONMENTAL SITE SCREENING REPORT

STUDY AREA 30

NAVAL TRAINING CENTER ORLANDO, FLORIDA

Unit Identification Code: N65928

Contract No.: N62467-89-D-0317/107

Prepared by:

Harding Lawson Associates 2590 Executive Center Circle, East Tallahassee, Florida 32301

Prepared for:

Department of the Navy, Southern Division Naval Facilities Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29418

Barbara Nwokike, Code 1873, Engineer-in-Charge

CERTIFICATION OF TECHNICAL DATA CONFORMITY (MAY 1987)

The Contractor, Harding Lawson Associates (formerly ABB Environmental Services, Inc.), hereby certifies that, to the best of its knowledge and belief, the technical data delivered herewith under Contract No. N62467-89-D-0317/107 are complete and accurate and comply with all requirements of this contract.

DATE: June 22, 1998	
---------------------	--

NAME AND TITLE OF CERTIFYING OFFICIAL:

John Kaiser

Task Order Manager

NAME AND TITLE OF CERTIFYING OFFICIAL:

Richard Allen

Project Technical Lead

(DFAR 252.227-7036)

TABLE OF CONTENTS

BRAC Environmental Site Screening Report Study Area 30 Naval Training Center Orlando, Florida

Chap	<u>ter</u>		TITLE	rage No
1.0	STUD	Y AREA	30, AUTO HOBBY SHOP AREA	. 1-1
	1.1	SA 30	, BACKGROUND AND CONDITIONS	. 1-1
	1.2	SA 30	, INVESTIGATION SUMMARY	. 1-1
		1.2.1	Geophysical Survey	. 1-1
			Passive Soil Gas Survey	
		1.2.3	Surface Soil Sampling	. 1-4
		1.2.4		
		1.2.5	Groundwater Monitoring Well Installation and Sampling	. 1-4
	1.3	SA 30	, RESULTS	
		1.3.1	J	
		1.3.2	3	
			Groundwater Analytical Results	
	1.4	SA 30	, CONCLUSIONS AND RECOMMENDATIONS	. 1-8
	D D) (C)	C		
REFE	RENCE	S		
A DDE	NDICE	c		
AFFE	NDICE	5	the continue of the state of the state of the continue of the continue of the state of the continue of the state of the continue of the contin	
A	ppend	ix A:	Technical Memorandum, Geophysical Survey Results, Study 30, Auto Hobby Shop	Area
A.	ppend	ix B:	Soil Gas Survey Analytical Results	
A-	ppend	ix C:	Soil Boring Logs, Monitoring Well Construction Details,	and
			Groundwater Sampling Field Data Sheets	
A	ppend	ix D:	Summary of Positive Detections Tables	
A	ppend	ix E:	Summary of Analytical Results	

LIST OF FIGURES

BRAC Environmental Site Screening Report Study Area 30 Naval Training Center Orlando, Florida

Figu	re Title	Page	No.
1	Location of Study Area 30	. 1.	- 2
2	Study Area 30 Surface Soil, Soil Boring and Monitoring Well Loca-	-	_
	tions, Buildings 129, 131 and 2262, Hobby Shop, Paint Storage and		
	Janitorial Services, Main Base	. 1.	- 3
3	Study Area 30 Soil Gas Locations, Buildings 129 and 131, Auto Hobby	r	
	and Paint Storage, Main Base		- 5

GLOSSARY

ABB-ES ABB Environmental Services, Inc.

bls below land surface

CLP Contract Laboratory Program

DQO data quality objective

FDEP Florida Department of Environmental Protection

HLA Harding Lawson Associates

 $\begin{array}{ll} \mu g/kg & \text{micrograms per kilogram} \\ \mu g/\ell & \text{micrograms per liter} \end{array}$

PCB polychlorinated biphenyl

RBC risk-based concentration

SA study area

SCG soil cleanup goal

SVOC semivolatile organic compound

TAL target analyte list TCL target compound list

TPH total petroleum hydrocarbons

USEPA U.S. Environmental Protection Agency

UST underground storage tank

VOC volatile organic compound

1.0 STUDY AREA 30, AUTO HOBBY SHOP AREA

This report contains information gathered during site screening activities conducted at Study Area (SA) 30. Site screening investigations began on August 8, 1997, and were completed on February 11, 1998. Proposed field activities were presented in the Site Screening Plan (ABB Environmental Services, Inc. [ABB-ES], 1995).

1.1 SA 30, BACKGROUND AND CONDITIONS. Study Area 30 is located on the Main Base of the Naval Training Center, Orlando (Figure 1). This section provides a brief background summary of conditions at SA 30. Additional details can be found in the Site Screening Plan (ABB-ES, 1995).

SA 30 includes the area to the south and east of Rickover Circle, on the southern part of the Main Base (Figure 2). Of the buildings currently at the site, three were included in the site screening investigation. They include Building 129, the auto hobby shop; Building 131, a paint storage building; and Building 2262, which houses the office of the contract janitorial service. These are the only facilities that were considered to have current site activities that warranted site investigation. Other buildings in the area, specifically Building 133, the car wash, and Building 139, the pesticide-mixing facility, were classified as 1/Blue in the Environmental Baseline Survey (ABB-ES, 1994). Previous site uses included motor pool vehicle maintenance operations, petroleum distribution and storage, pest control, and railroad operations. The fuel tank farm associated with Building 2273 was investigated as part of the underground storage tank (UST) program (ABB-ES, 1996).

- 1.2 SA 30, INVESTIGATION SUMMARY. The site screening investigation was intended to evaluate media that may have received material released at the site. Historical site activities and current site conditions were used to determine sampling locations.
- 1.2.1 Geophysical Survey A geophysical survey was conducted to evaluate potential buried debris disposal in the western part of the SA. Evidence of possible landfilling was observed in pre-1962 aerial photographs taken of the area west of Building 2062. The area of potential debris disposal appeared to extend to the west, into the area underneath the existing parking lot.

A reference grid was established over the area of interest and a scale map of significant surface features was generated. Geophysical survey data were collected from east-west survey lines that were spaced 10 feet apart. Geophysical measurements were collected with a cesium vapor magnetometer in vertical gradient mode and an EM-61 time domain metal detector. Detected geophysical anomalies were compared with the locations of observable cultural features that might influence the instrument response. The results of the geophysical survey are included in Appendix A.

Analysis of the geophysical data does not indicate that a significant amount of buried debris is located in the area investigated.

K:\02530\02530-09\SSR\02530536.DWG, VC-88 D6/19/98 14:40:35, AutoCAD R

- 1.2.2 Passive Soil Gas Survey In order to rapidly evaluate the area that may have been affected by volatile organic compounds (VOCs) during current and past vehicle maintenance operations, a passive soil gas survey was conducted in the vicinity of Building 129. A sampling grid with nodes 50 feet apart was established over the SA (Figure 3). A passive soil gas sample collector was installed approximately 2 feet below land surface (bls) at each grid node. Nodes that would have been under buildings or in concrete were offset where necessary. When the sample collectors were retrieved, they were submitted to a laboratory for VOC analysis. No VOCs were detected in the passive soil gas samples collected during this field investigation. The laboratory analytical results are presented in Appendix B.
- 1.2.3 Surface Soil Sampling Surface soil samples were collected from 12 locations at SA 30 (Figure 2). Two samples (30S00101 and 30S00201) were collected from the dumpster storage area, which is located along the west side of Building 131. Two samples (30S00301 and 30S00501) were collected from the strip of grass to the south of the vehicle storage buildings, which are located south of Building 129. A single surface soil sample (30S00401) was collected between the vehicle storage buildings where a dumpster was formerly located. Surface soil sample 30S00601 was collected from the area of bare soil near the southwest corner of Building 129. A single surface soil sample (30S00701) was collected adjacent to the storm drain northeast of Building 139. Three surface soil samples (30S00801, 30S000901 and 30S01001) were collected from the south. west, and north sides of Building 2262. Two samples (30S01101 and 30S01201) were collected from the west and east ends of the retention pond that is located east of Building 2262, because no areas showed distinctive staining or stressed vegetation.

Surface soil samples for each location were submitted to an approved laboratory for full suite Contract Laboratory Program (CLP) target analyte list (TAL) and target compound list (TCL) laboratory analysis. Pesticides and polychlorinated biphenyls (PCBs), along with total petroleum hydrocarbons (TPH), were analyzed in accordance with U.S. Environmental Protection Agency (USEPA) Level IV data quality objectives (DQOs). Surface soil samples collected in the vicinity of Buildings 139 and 2262 (30S00601 through 30S01201) were also submitted for herbicide analysis.

- 1.2.4 Soil Boring Investigation and Subsurface Soil Sampling Seven soil borings were advanced at various locations around the SA (Figure 2). One boring (30B00101) was located north of Rickover Circle in the vicinity of the former motor pool. Another boring, 30B00201, was located to the northeast of Building 129, also in the area of the former motor pool. Two borings (30B00301 and 30B00401) were located adjacent to Building 129. Boring 30B00301 was located to the south of a flammables storage locker on the south side of Building 129, and 30B00401 was located near the southeast corner of Building 129, in the area of downgradient groundwater flow. Two borings were also located adjacent to Building 2262; boring 30B00501 was located at the southeast corner and 30B00601 was located next to the exposed pipe at the northeast corner of the building. One boring, 30B00701, was located in the central portion of the site.
- 1.2.5 Groundwater Monitoring Well Installation and Sampling Seven monitoring wells, OLD-30-01 through OLD-30-07, were installed during the field investigation (Figure 2). Well OLD-30-08 is a compliance well previously installed at the former waste oil UST. The other compliance wells have been abandoned.

K:\02530\02530-09\SSR\02530537.DWG, KHM-VC 04/21/98 12:28:55, AutoCAD R14

FIGURE 3
STUDY AREA 30 SOIL GAS LOCATIONS,
BUILDINGS 129 AND 131,
AUTO HOBBY AND PAINT STORAGE,
MAIN BASE

BASE REALIGNMENT AND CLOSUR ENVIRONMENTAL SITE SCREENING REPORT STUDY AREA 30 NAVAL TRAINING CENTER ORLANDO, FLORIDA The soil borings for the new well installations were advanced approximately 15 to 16 feet bls with hollow stem augers. The screened interval for each monitoring well bracketed the water table, which was encountered at 5 to 12 feet bls during the investigation. A groundwater sample was collected from each new well, as well as from the existing compliance well at the former location of the waste oil UST, using low-flow sampling techniques (ABB-ES, 1997).

Groundwater samples were submitted to an approved laboratory for full suite CLP TAL and TCL laboratory analysis. Pesticides and PCBs, along with TPH and suspended solids, were analyzed in accordance with USEPA Level IV DQOs. Filtered samples (0.45-micron in-line filter) were also collected and submitted for TAL inorganics analysis only. A second groundwater sampling event was conducted at two of the monitoring wells, OLD-30-02 and OLD-30-03, with groundwater and filtered groundwater samples submitted for TAL inorganic analysis.

A round of static water-level measurements were made following the groundwater sampling activities. Water-level data were collected from the SA 30 monitoring wells, three monitoring wells at SA 32, and three monitoring wells installed for the UST investigation at Building 2273. The groundwater elevations were used to interpret groundwater flow directions at the site (Figure 2).

The monitoring well installation diagrams and field sample data are included in $\mbox{\it Appendix}\ \mbox{\it C}.$

1.3 SA 30, RESULTS. The analytical results of the surface and subsurface soil samples collected during site screening at SA 30 were evaluated by comparing the concentration of the various compounds detected to screening criteria, including basewide soil background screening levels, Florida Department of Environmental Protection's (FDEP's) soil cleanup goals (SCGs), and USEPA Region III risk-based concentrations (RBCs).

Analytical results are presented as Positive Detections Tables in Appendix D. A summary of all analytical results is presented in Appendix E. Exceedances of background screening or regulatory guidance concentrations (shaded on the positive detections tables) are displayed in chemical boxes near their respective explorations on Figure 2.

- 1.3.1 Surface Soil Analytical Results Analysis of the surface soil collected at SA 30 detected VOCs, semivolatile organic compounds (SVOCs), pesticides, PCBs, herbicides and inorganics (Appendix D, Table D-1). A single SVOC, benzo(a)-pyrene, was detected at concentrations exceeding screening criteria. The detected concentration of benzo(a)pyrene in sample 30S00101 was 140 micrograms per kilogram (μ g/kg), exceeding both the Florida residential SCG (100 μ g/kg) and the USEPA Region III residential RBC for soil (88 μ g/kg). Sample 30S00101 is located behind a dumpster in an area that would receive surface water runoff from Building 131 as well as the surrounding asphalt-paved surfaces. Since benzo(a)pyrene was not detected in groundwater, comparison to leachability-based SCGs is not required.
- 1.3.2 Subsurface Soil Analytical Results Analysis of the subsurface soil collected at SA 30 detected SVOCs, pesticides, herbicides, and inorganics (Appendix D, Table D-2). None of the analytes detected in the subsurface samples from SA 30 were at concentrations exceeding screening values. Since none of the

analytes detected in the subsurface soil were found in groundwater above screening values, comparison to leachability-based SCGs is not necessary.

1.3.3 Groundwater Analytical Results Analysis of the groundwater collected at SA 30 detected VOCs, SVOCs, pesticides, and inorganics (Appendix D, Table D-3).

Aluminum was detected in the groundwater sample from OLD-30-01 (30G00101) at a concentration of 4,130 micrograms per liter ($\mu g/\ell$), which slightly exceeded the background screening value of 4,067 $\mu g/\ell$. This concentration is well below the RBC for aluminum in groundwater of 37,000 $\mu g/\ell$. The Florida groundwater guidance value for aluminum (200 $\mu g/\ell$) is a secondary standard. Secondary standards have been established for Class G-I and G-II aquifers by the State of Florida, largely along Federal guidelines, to ensure that groundwater meets at least minimum criteria for taste, odor, and color. Secondary standards were not established for human health, cancer risk, or ecological risk considerations; however, these standards are enforceable in the State of Florida.

A description of past site activities was included in Section 1.1. records reviews and interviews, there have been no known site activities that may have contributed to the observed exceedance of the secondary standards for aluminum. Surface and subsurface soil concentrations of aluminum did not exceed The sample was very turbid (178.9 background screening concentrations. nephelometric turbidity units) and had 150 milligrams per liter of suspended solids, suggesting that suspended solids contributed to the observed secondary standard exceedance for aluminum. There were no other TAL metal exceedances, and groundwater parameters measured during sampling (pH, temperature, conductivity, and turbidity) were within normal limits. Harding Lawson Associates (HLA) (formerly ABB-ES) concludes that the aluminum concentrations are naturally occurring, are not related to past site activities, and do not pose a risk to human health or the environment. The aluminum concentration in the filtered sample from OLD-30-01 (30H00101) was 516 $\mu g/\ell$. The other analytes detected in the groundwater samples were below screening values.

Analysis of groundwater sample 30H00201 (the filtered aliquot of 30G00201) collected from well OLD-30-02 on November 12, 1997, detected chromium, iron, manganese, mercury, and nickel at concentrations above screening values. None of these elements were detected in the nonfiltered sample (30G00201). The monitoring well was resampled on February 11, 1998, and samples 30G00202 and 30H00202 were submitted for TAL metal analysis. Each of the inorganics previously detected above screening values were at concentrations below screening values or below detection limits in the second sampling episode.

Analysis of groundwater sample 30G00301 collected from OLD-30-03 detected chromium and nickel at concentrations above screening values. These elements were also detected in the filtered sample (30H00201), but at concentrations below screening values. The monitoring well was resampled (30G00302 and 30H00302) for TAL metal analysis. Each of the inorganics previously detected above screening values were at concentrations below screening values or below detection limits in the second sampling episode.

The only organic analyte that exceeded screening criteria in groundwater samples from SA 30 was methylene chloride. Methylene chloride was detected in the field duplicate sample (30G00301D) collected at OLD-30-03 at a concentration of 8 $\mu g/\ell$, which exceeds the FDEP groundwater guidance concentration and maximum contaminant

level of 5 $\mu g/\ell$. Methylene chloride was below detections limits in the corresponding sample (30G00301). The methylene chloride concentration, 20 $\mu g/\ell$, in the groundwater sample from OLD-30-07 (30G00701) was also higher than the screening values.

The detection of methylene chloride in samples from SA 30 is not unusual. Methylene chloride is commonly encountered as a laboratory artifact in environmental samples because it is the principal solvent used in the majority of USEPA analytical methods. While the analytical results for groundwater and associated quality assurance and quality control samples for SA 30 do not indicate that the laboratory has introduced methylene chloride contamination, other sample delivery groups submitted recently to the same analytical laboratory had low-level detections of methylene chloride in both rinsate and trip blanks.

Another factor supporting the interpretation of the methylene chloride detections as a laboratory artifact is that it is the only VOC detected in groundwater sampled at SA 30. Methylene chloride is inherently unstable and would likely degrade in time into other compounds, such as chloroform or chloromethane. Moreover, industrial-grade methylene chloride normally contains plasticizers and stabilizers (e.g., cyclohexane) and is sometimes mixed with other chlorinated solvents, which would have been detected by the analytical methods used if present in the groundwater samples.

1.4 SA 30, CONCLUSIONS AND RECOMMENDATIONS. The analytical results from media sampled at SA 30 do not indicate that the site has been affected by past site use. Benzo(a)pyrene was detected in surface soil sample 30S00101 at a concentration of 140 micrograms per kilogram ($\mu g/kg$), exceeding both the Florida residential SCG (100 $\mu g/kg$) and the USEPA Region III residential RBC for soil (88 $\mu g/kg$). However, the sample is located behind a dumpster in an area that would receive surface water runoff from an adjacent building as well as surrounding asphalt-paved surfaces.

Aluminum was detected in one groundwater sample, 30G00101, at a concentration of 4,130 $\mu g/\ell$, which is slightly above the background screening concentration of 4,067 $\mu g/\ell$. The turbidity and total suspended solids of the groundwater at the time of sampling were elevated, indicating that suspended sediment is likely responsible for aluminum concentrations in the sample. In addition, the filtered sample, 30H00101, had a much lower concentration (516 $\mu g/\ell$ versus 4,660 $\mu g/\ell$), further evidence that the aluminum exceedance was due to sample turbidity. Surface and subsurface soil did not have any detections of aluminum above screening criteria.

The detection of several inorganic analytes at concentrations above screening values in the groundwater samples from OLD-30-02 and OLD-30-03 prompted a resampling of those two wells. The previous inorganic exceedances were not confirmed by the resampling event. Several of the inorganics originally above screening values were not detected at all when resampled. The remainder of the previous exceedances were below screening values. Since the concentrations detected in the samples collected during the resampling differed significantly from the first samples collected, these results are most readily explained by either a laboratory error or possible contamination of the sampling containers.

Methylene chloride was detected in one groundwater sample (30G00701) and the field duplicate (30G00301D) of sample 30G00301 at concentrations above screening values. Since methylene chloride was detected in the field duplicate but not the corresponding sample from OLD-30-03, the most likely explanation would be laboratory contamination. Methylene chloride is a common laboratory artifact. The detection in sample 30G00701 is also attributable to laboratory contamination because none of the degradation products of or compounds commonly mixed with methylene chloride were detected at the site.

HLA (formerly ABB-ES) recommends that SA 30 be made eligible for transfer. Because the site had a single benzo(a)pyrene detection in surface soil at a concentration slightly exceeding the Florida residential SCG and the USEPA Region III residential RBC, HLA recommends that the site be reclassified from 7/Gray to 3/Light Green.

The undersigned members of the Orlando Partnering Team concur with the findings and recommendations of the preceding investigation.

_		
	STUDY AREA 30	
1	Jancy Loderpusy	6/23/98
	U.S. Environmental Protection Agency Region IV	Date 1
	Florida Department of Environmental Protection	Date
	Warne & Hours	6/23/98
Ì	U.S. Department of the Navy	Date

REFERENCES

- ABB Environmental Services, Inc. (ABB-ES). 1994. Base Realignment and Closure Environmental Baseline Survey Report, Naval Training Center (NTC), Orlando, Florida. Prepared for Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM), North Charleston, South Carolina.
- ABB-ES. 1995. Site Screening Plan, Groups I through IV Study Areas and Miscellaneous Additional Sites, NTC, Orlando, Florida. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.
- ABB-ES. 1996. Tank Closure Assessment Report, Building 2033, NTC, Orlando, Florida. Prepared for SOUTHNAVFACENGCOM, Charleston, South Carolina.
- ABB-ES. 1997. Project Operations Plan for Site Investigations and Remedial Investigations, Volumes I and I, NTC, Orlando, Florida. Prepared for SOUTHNAVFACENGCOM, North Charleston, South Carolina.

APPENDIX A

TECHNICAL MEMORANDUM
GEOPHYSICAL SURVEY RESULTS
STUDY AREA 30, AUTO HOBBY SHOP

TECHNICAL MEMORANDUM GEOPHYSICAL SURVEY RESULTS STUDY AREA 30. AUTO HOBBY SHOP

INTRODUCTION. The following is a summary of the significant findings of the geophysical survey that took place in August 1997 at Study Area (SA) 30, at the Main Base of Naval Training Center, Orlando. The purpose for the survey was to evaluate potential buried debris disposal in the western part of the study area. Evidence of possible landfilling was observed in pre-1962 aerial photographs taken of the area west of Building 2062. The area of potential debris disposal appeared to extend to the west, into the area underneath the existing parking lot

Following is a discussion of the results.

<u>FIELD PROGRAM</u>. Geophysical surveys included magnetometer and time domain metal detector (TDMD) surveys in the parking lot west of Building 2062 (Figure 1).

<u>Grid Coordinate System</u>. Prior to the start of the field program, ABB-ES established a grid coordinate system in the area of interest. The grid coordinate system was oriented along magnetic north and consisted of a 100- by 100-foot grid established with a compass and cloth measuring tape.

<u>Magnetometer Survey</u>. The magnetometer instrumentation consisted of a cesium vapor magnetometer that was configured in the vertical gradient mode. Thus, the instrument required two magnetic sensors mounted on a vertical (nonmagnetic) rod. The sensors were separated by a distance of one meter. The instrument collected total field magnetic readings in both the lower and upper sensors once per second during the survey. Individual traverses were established in an east-west direction, and successive traverse lines were separated by 10 feet.

The magnetic method is a versatile geophysical technique used for evaluating shallow geologic structures and for locating buried manmade objects and buried debris by mapping local distortions in the earth's magnetic field produced by buried magnetic objects (steel and other magnetic materials). Vertical gradient measurements are very useful in mapping the lateral extent of landfilled materials, since nearly all landfills contain sufficient ferrous materials to be mapped with this technique. Vertical gradient measurements of the earth's magnetic field are often taken during environmental magnetic surveys because they are more sensitive to the presence of near-surface metal objects than total field values alone.

More than 1,500 individual magnetic stations were established during the survey.

<u>Time Domain Metal Detector Survey</u>. The TDMD survey was operated along the same grid as the magnetometer survey, and with the same spacing (10 feet) between traverses. Data were acquired along each traverse at the rate of 1.60 readings per foot (1 reading every 19 centimeters). The instrumentation consisted of a Geonics EM-61 TDMD with a Polycorder high capacity data logger.

The EM-61 TDMD was designed to map buried conductive objects, such as metal tanks, drums, and utilities. The instrument incorporates an antenna system consisting of a transmitter and receiver. The transmitter produces a series of

electromagnetic (EM) wavelets that pulse into the earth 75 times per second. After each pulse, a secondary EM field is produced briefly from moderately conductive shallow soils, and for a longer period of time from buried metallic objects. Between primary EM pulses, a time delay is imposed upon the data logger to permit the secondary response from the soils to dissipate prior to the somewhat later and longer response from any buried metal that is present. The receiver senses the secondary responses from metallic objects and they are recorded by the data logger.

There is an upper and a lower coil (Channel 1 and Channel 2, respectively, on the data output) on the EM-61 TDMD. One option for data presentation is to contour the output (in millivolts) of the lower coil, which is more sensitive to shallow buried objects, in combination with a second contour map of the vertical gradient between the upper and lower coils (a dimensionless parameter). The gradient values minimize the effects of near surface metallic materials. Thus, the former data set maps shallow metallic objects, whereas the latter delineates relatively deeper objects.

RESULTS. Figure 1 shows the approximate location of the magnetometer and TDMD surveys completed at SA 30. Figure 2 presents the vertical gradient (magnetic) contours for the geophysical data. Figures 3 and 4 present contour maps derived from the lower sensor (sensitive to shallow buried objects) and from the vertical gradient between the upper and lower sensors (more sensitive to more deeply buried objects).

During the field survey, a site sketch map was generated that noted cultural features likely to produce "noise" on magnetic and electromagnetic data. When these features are superimposed over the magnetic and EM contour maps, they correspond with geophysical anomalies. For example, on Figure 2 (Vertical Magnetic Gradient Contours), there is a linear north-south anomaly located approximately 110 feet east of the western edge of the survey area, which is at 1000 feet east (an arbitrary setting). The geophysical anomaly is caused by a concrete (and steel reinforcing rod) curbing. Another anomaly in the central portion of the survey area about 60 feet east of the linear anomaly is a light pole and concrete curbing.

A widespread disposal area with buried metallic debris would have a much different magnetic and electromagnetic signature than that observed in these data. Accordingly, ABB Environmental Services, Inc., concludes that the area is not underlain by old landfilled debris.

Scale 1:480

(feet)

SOUTHERN DIVISION

TIME DOMAIN METAL DETECTOR CONTOURS (CHANNEL 4, VERTICAL GRADIENT) STUDY AREA 30

ABB ENVIRONMENTAL SERVICES, INC.

FIGURE 4

APPENDIX B SOIL GAS SURVEY ANALYTICAL RESULTS

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: Samples Received: Samples Analyzed: Samples Reported: 9/8/97

8/21/97 - 8/28/97 8/25/97 - 9/3/97 8/26/97 - 9/8/97

Collected by: Received by: Analyzed by: Reported by: ABB-ES **Guy Auld Guy Auld Guy Auld**

0.0

Client Client Address: ABB-ES

1080 Woodcock Road, Suite 100

Orlando, FL 32803

Project Identification: NTC, ORLANDO Report Revision: Target Job Code: ABT002 Purchase Order:

Method Deviations: none Sampling Method: Passive soil gas

Client Contact: Client Phone: Client Fax:

John Kaiser 407-895-8845 407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW ¹	MDL ²	PQL ³	35V- 01401	35V- 02601	35V- 02601D	35V- 01501	35V- 01601	35V- 01701	35V- 01701D	36V- 02701	30V- 08 9 01	30V- 09001
	(g/mole)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	50.49	0.559	10.0	ND	ND	ND .	ND	ND	ND	ND	ND	ND.	ND
Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	94.94	0.444	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	64.51	0.341	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	96.94	0.298	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	84.93	0.448	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans -1,2-Dichloroethene	96.94	0.419	2.50	ND	ND	ND	ND	ND	ND	ND	ND	, ND	ND
1,1-Dichloroethane	98.96	0.488	2.50	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	119.38	0.472	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	78.11	0.496	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	98.96	0.639	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	131.39	0.135	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	112.99	0.121	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	163.83	0.161	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ŊD
Dibromomethane	173.83	0.525	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
Toluene	92.14	0.156	2.50	ND	ND	ND	ND	МD	ND	ND	ND	ND	ND
trans - 1,3-Dichloropropene	110.97	0.412	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachioroethylene or PCE	165.83	0.231	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	208.28	0.264	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	112.56	0.171	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	106.17	0.308	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	106.17	0.473	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	106.17	0.227	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	104.15	0.181	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	157.01	0.127	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec -Butylbenzene	134.22	0.301	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	134.22	0.276	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	260.76	0.461	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	128.17	0.715	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sample Condition (S,U)/Dilut			1	s	s	S	s	s	s	s	S	, , s	s

S: Satisfactory, U: Unsatisfactory

SAMPLE NARRATIVE:

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: 8/21/97 - 8/28/97 Samples Received: 8/25/97 - 9/3/97 Samples Analyzed: 8/26/97 - 9/8/97 9/8/97 Samples Reported: NTC, ORLANDO Project Identification: Target Job Code: ABT002

Purchase Order:

Collected by: Received by: Analyzed by: Reported by:

Report Revision:

Method Deviations:

Sampling Method:

ABB-ES **Guy Auld Guy Auld Guy Auld** 0.0

none

Client: Client Address: ABB-ES

1080 Woodcock Road, Suite 100

Orlando, FL 32803

Client Contact: John Kaiser Client Phone: 407-895-8845 Client Fax: 407-896-6150

Passive soil gas USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW¹	MDL ²	PQL ³	30V- 08101	30V- 08001	30V- 07901	30V- 08201	30V- 08801	30V- 08701	30V- 08601	30V- 08501	30V- 08401	30√- 07801	
	(g/mole)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloromethane	50.49	0.559	10.0	ND	ND	ND	ND	ND	ND	, ND	ND	ND	ND	
Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromomethane	94.94	0.444	10.0	ND	ND.	ND	ND	ND	ND	ND .	ND	ND	ND	
Chloroethane	64.51	0.341	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND	ND .	ND	ND	ND.	ND	ND	ND	
1,1-Dichloroethene	96.94	0.298	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methylene Chloride	84.93	0.448	2.50	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	
trans-1,2-Dichloroethene	96.94	0.419	2.50	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	
1,1-Dichloroethane	98.96	0.488	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	: ND	
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	
Chloroform	119.38	0.472	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzene	78.11	0.496	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	98.96	0.639	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethylene	131.39	0.135	2.50	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	
1,2-Dichloropropane	112.99	0.121	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromodichioromethane	163.83	0.161	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromomethane	173.83	0.525	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene	92.14	0.156	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
trans -1,3-Dichloropropene	110.97	0.412	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Tetrachloroethylene or PCE	165.83	0.231	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	208.28	0.264	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1.2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	112.56	0.171	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1.1.1.2-Tetrachloroethane	167.85	0.117	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene	106.17	0.308	2.50	- ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
m&p-Xylene	106.17	0.473	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
o-Xylene	106.17	0.227	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Styrene	104.15	0.181	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	٠.
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromobenzene	157.01	0.431	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
tert-Butylbenzene	134.22	0.127	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
sec-Butylbenzene	134.22	0.200	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
•	147.00	0.084	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,2-Dichlorobenzene	134.22	0.164	2.50	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	
n-Butylbenzene				ND										
1,2,4-Trichlorobenzene	181.45	0.406 0.461	2.50 2.50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	и,
Hexachlorobutadiene	260.76			ND DN	ND	10 Tale 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND	ND ND	1.0		ND	ND	ND	
Naphthalene	128.17	0.715	2.50			ND			ND	ND	ND	ND	ND	
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND'	
Sample Condition (S,U)/Dilut S: Satisfactory, U: Unsatisfa	, ,		1	S	S	s	S	s	S	S	S	S	S	

S: Satisfactory, U: Unsatisfactory

SAMPLE NARRATIVE:

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

8/21/97 - 8/28/97 Samples Collected: Samples Received: 8/25/97 - 9/3/97 8/26/97 - 9/8/97 Samples Analyzed: 9/8/97 Samples Reported: Project Identification: NTC, ORLANDO **ABT002** Target Job Code:

Purchase Order:

Collected by: Received by: Analyzed by: Reported by:

Method Deviations:

Sampling Method:

ABB-ES Guy Auld **Guy Auld** Guy Auld Report Revision: 0.0

Client:

BESTATION OF THE STATE OF THE S

Client Address:

Client Contact:

Client Phone:

Client Fax:

ABB-ES 1080 Woodcock Road, Suite 100

Orlando, FL 32803

John Kaiser 407-895-8845 407-896-6150

Passive soil gas USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

none

	Compound	MW¹ (g/mole)	MDL ² (ug/L)	PQL ³ (ug/L)	30V- 07801D (ug/L)	30V- 06401 (ug/L)	30V- 06501 (ug/L)	30V- 06601 (ug/L)	30V- 06701 (ug/L)	30V- 04801 (ug/L)	30V- 04901 (ug/L)	30V- 05101 (ug/L)	30V- 05201 (ug/L)	30V- 05201D (ug/L)	
	Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Chloromethane	50.49	0.559	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Bromomethane	94.94	0.444	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Chloroethane	64.51	0.341	10.0	, ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,1-Dichloroethene	96.94	0.298	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Methylene Chloride	84.93	0.448	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	trans-1,2-Dichloroethene	96.94	0.419	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,1-Dichloroethane	98.96	0.488	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Chloroform	119.38	0.472	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Benzene	78.11	0.496	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,2-Dichloroethane	98.96	0.639	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Trichloroethylene	131.39	0.135	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,2-Dichloropropane	112.99	0.121	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĎ	
	Bromodichloromethane	163.83	0.161	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Dibromomethane	173.83	0.525	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	cis-1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Toluene	92.14	0.156	2.50	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	
	trans-1,3-Dichloropropene	110.97	0.412	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	
	Tetrachloroethylene or PCE	165.83	0.231	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Jibromochloromethane	208.28	0.264	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Chlorobenzene	112.56	0.171	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Ethylbenzene	106.17	0.308	2.50	ND	ND	ND	ИD	ND	МD	ND	ND	ND	ND	
	m&p-Xylene	106.17	0.473	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	o-Xylene	106.17	0.227	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Styrene	104.15	0.181	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	
	Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,1,2,2-Tetrachioroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,2,3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Bromobenzene	157.01	0.127	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	sec -Butylbenzene	134.22	0.301	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND	ND	ND	, ND	ND	ND	ND	ND	ND	
	1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
,	n-Butylbenzene	134.22	0.276	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Hexachlorobutadiene	260.76	0.461	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Naphthalene	128.17	0.715	2.50	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	
	1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	Sample Condition (S,U)/Dilut S: Satisfactory, U: Unsatisfa			1	S	S	S	S	S	S	S	S	s	S	

S: Satisfactory, U: Unsatisfactory U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

AMPLE NARRATIVE:

Quality Control Analyst:

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: 8/21/97 - 8/28/97 Samples Received: 8/25/97 - 9/3/97 Samples Analyzed: 8/26/97 - 9/8/97 Samples Reported: 9/8/97 Project Identification: NTC, ORLANDO

Collected by: Received by: Analyzed by: Reported by:

ABB-ES **Guy Auld Guy Auld Guy Auld**

Client: Client Address: ABB-ES

John Kaiser

407-895-8845

407-896-6150

1080 Woodcock Road, Suite 100

Orlando, FL 32803

Report Revision: 0.0 Client Contact: Target Job Code: ABT002 Method Deviations: none Client Phone: Purchase Order: Sampling Method: Passive soil gas Client Fax:

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW¹ (g/mole)	MDL² (ug/L)	PQL ³ (ug/L)	30V- 05301 (ug/L)	30V- 05401 (ug/L)	30V- 06801 (ug/L)	30V- 05501 (ug/L)	30V- 05601 (ug/L)	30V- 05701 (ug/L)	30V- 05801 (ug/L)	30V- 04201 (ug/L)	30V- 04201D (ug/L)	30V- 04101 (ug/L)	
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND '	ND	ND '	ND	ND	ND	ND	
Chloromethane	50.49	0.559	10.0	ND	ND									
Vinyl Chloride	62.50	1.011	10.0	ND	ND									
Bromomethane	94.94	0.444	10.0	ND	ND									
Chioroethane	64.51	0.341	10.0	ND	ND									
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND									
1,1-Dichloroethene	96.94	0.298	2.50	ND	ND									
Methylene Chloride	84.93	0.448	2.50	ND	ND									
trans -1,2-Dichloroethene	96.94	0.419	2.50	ND	ND									
1,1-Dichloroethane	98.96	0.488	2.50	ND	ND									
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND									
Chloroform	119.38	0.472	2.50	ND	ND									
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND									
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND									
Benzene	78.11	0.496	2.50	ND	ND									
1,2-Dichloroethane	98.96	0.639	2.50	ND	ND									
Trichloroethylene	131.39	0.135	2.50	ND	ND									
1,2-Dichloropropane	112.99	0.121	2.50	ND	ND									
Bromodichloromethane	163.83	0.161	2.50	ND	ND									
Dibromomethane	173.83	0.525	2.50	ND	ND									
cis -1,3-Dichloropropene	110.97	0.306	2.50	ND	ND									
Toluene	92.14	0.156	2.50	ND	ND									
trans-1,3-Dichloropropene	110.97	0.412	2.50	ND	ND									
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND									
Tetrachioroethylene or PCE	165.83	0.231	2.50	ND		-								
Dibromochloromethane	208.28	0.264	2.50	ND		ND	ND							
1,2-Dibromoethane	187.86	0.562	2.50	ND	ND ND	ND	ND							
Chlorobenzene	112.56	0.171	2.50	ND		ND	ND							
1,1,1,2-Tetrachioroethane	167.85	0.117	2.50	ND	ND									
Ethylbenzene	106.17	0.117	2.50	ND	ND	ND .	ND	ND			ND	ND	ND	
m&p-Xylene	106.17	0.473	5.00	ND	ND									
o-Xylene	106.17	0.473	2.50	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	
Styrene	104.15	0.227	2.50	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND		ND	ND	ND	ND	
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND		ND	ND	ND	ND	
1.2.3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	
Bromobenzene	157.01	0.431	2.50	ND	ND	ND	ND	ND		ND	ND	ND	ND	
tert-Butylbenzene	134.22	0.127	2.50	ND	ND				ND	ND	ND	ND	ND	
•						ND	ND							
sec -Butylbenzene	134.22	0.301	2.50	ND	ND	٠.								
1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND									
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND									
n-Butylbenzene	134.22	0.276	2.50	ND	ND									
1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND	ND									
Hexachlorobutadiene	260.76	0.461	2.50	ND	ND									
Naphthalene	128.17	0.715	2.50	ND	ND									
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND									
Sample Condition (S,U)/Diluti S: Satisfactory, U: Unsatisfa			1	S	S	S	S	S	S	S	S	S	S	

S: Satisfactory, U: Unsatisfactory U: see sample narrative

SAMPLE NARRATIVE:

Quality Control Analyst:

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: Samples Received: Samples Analyzed: Samples Reported: Project Identification: Target Job Code:

Purchase Order:

8/21/97 - 8/28/97 8/25/97 - 9/3/97 8/26/97 - 9/8/97 9/8/97 NTC, ORLANDO

ABT002

Collected by: Received by: Analyzed by: Reported by:

Report Revision:

ABB-ES Guy Auld Guy Auld Guy Auld

0.0

Client: Client Address: ABB-ES 1080 Woodcock Road, Suite 100

Orlando, FL 32803

Client Contact: John Kaiser

Method Deviations:noneClient Phone:407-895-8845Sampling Method:Passive soil gasClient Fax:407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW¹ (g/mole)	MDL ² (ug/L)	PQL ³ (ug/L)	30V- 04001 (ug/L)	30V- 03901 (ug/L)	30V- 03801 (ug/L)	30V- 03701 (ug/L)	30V- 03601 (ug/L)	30V- 03501 (ug/L)	30V- 03401 (ug/L)	LABDUP 30V- 08601 (ug/L)	LABDUP 30V- 05801 (ug/L)	30V- 03301 (ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND							
Chloromethane	50.49	0.559	10.0	ND	ND	ND							
Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND							
Bromomethane	94.94	0.444	10.0	ND	ND	ND							
Chloroethane	64.51	0.341	10.0	ND	ND	ND							
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND							
1,1-Dichloroethene	96.94	0.298	2.50	ND	ND	ND							
Methylene Chloride	84.93	0.448	2.50	ND	ND	ND							
trans -1,2-Dichloroethene	96.94	0.419	2.50	ND	ND	ND							
1,1-Dichloroethane	98.96	0.488	2.50	ND	ND	ND							
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND	ND							
Chloroform	119.38	0.472	2.50	ND	ND	ND							
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND							
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND							
Benzene	78.11	0.496	2.50	ND	ND	ND							
1,2-Dichloroethane	98.96	0.639	2.50	ND	ND	ND							
Trichloroethylene	131.39	0.135	2.50	ND	ND	ND							
1,2-Dichloropropane	112.99	0.121	2.50	ND	ND	ND							
Bromodichloromethane	163.83	0.161	2.50	ND	ND	ND							
Dibromomethane	173.83	0.525	2.50	ND	ND	ND							
cis -1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND							
Toluene	92.14	0.156	2.50	ND	ND	ND							
trans -1,3-Dichloropropene	110.97	0.412	2.50	ND	ND	ND							
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND							
etrachloroethylene or PCE	165.83	0.231	2.50	ND	ND	ND							
ibromochloromethane	208.28	0.264	2.50	ND	ND	ND							
1,2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND							
Chlorobenzene	112.56	0.171	2.50	ND	ND	ND							
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND	ND	ND							
Ethylbenzene	106.17	0.308	2.50	ND	ND	ND							
m&p-Xylene	106.17	0.473	5.00	ND	ND	ND							
o-Xylene	106.17	0.227	2.50	ND	ND	ND							
Styrene	104.15	0.181	2.50	ND	ND	ND							
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND							
Bromoform	252.73	0.338	2.50	ND	ND	ND							
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND	ND	ND							
1,2,3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND							
Bromobenzene	157.01	0.127	2.50	ND	ND	ND							
tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND							
sec -Butylbenzene	134.22	0.301	2.50	ND	ND	ND							
1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND	ND							
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND							
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND							
n-Butvibenzene	134.22	0.276	2.50	ND	ND	ND							
1.2.4-Trichlorobenzene	181.45	0.406	2.50	ND	ND	ND							
Hexachlorobutadiene	260.76	0.461	2.50	ND	ND	ND							
Naphthalene	128.17	0.715	2.50	ND	ND	ND							
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND							
Sample Condition (S,U)/Dilut S: Satisfactory, U: Unsatisfa			1	s	s	S	S	s	S	s	S	s	S

S: Satisfactory, U: Unsatisfacto.
U: see sample narrative

AMPLE NARRATIVE:

Quality Control Analyst:

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: Samples Received: Samples Analyzed: Samples Reported: Project Identification:

8/21/97 - 8/28/97 8/25/97 - 9/3/97 8/26/97 - 9/8/97 9/8/97

Collected by: Received by: Analyzed by: Reported by:

Sampling Method:

ABB-ES **Guy Auld** Guy Auld

Client: Client Address: ABB-ES

1080 Woodcock Road, Suite 100

Orlando, FL 32803

Target Job Code: Purchase Order:

NTC, ORLANDO **ABT002**

Guy Auld Report Revision: 0.0 Method Deviations: none

Client Contact: Client Phone: Passive soil gas Client Fax:

John Kaiser 407-895-8845 407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW¹	MDL ²	PQL ³	30V- 03201	30V- 01701	30V- 01801	30V- 01801D	30V- 01901	30V- 02001	30∨- 02101	30∨- 02301	30V- 02401	30√- 02501
	(g/mole)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	50.49	0.559	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	94.94	0.444	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	64.51	0.341	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND	NĎ	ND	ND	ND	ND	ND	ND:
1.1-Dichloroethene	96.94	0.298	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	84.93	0.448	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	96.94	0.419	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	98.96	0.488	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	119.38	0.472	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	78.11	0.496	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	98.96	0.639	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	131.39	0.135	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	112.99	0.121	2.50	ND	ND	ND	NĎ	ND	ND	ND	ND	ND	ND
Bromodichloromethane	163.83	0.161	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	173.83	0.525	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	92.14	0.156	2.50	ND	ND	ND	ND "	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	110.97	0.412	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachioroethylene or PCE	165.83	0.231	2.50	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND
Dibromochioromethane	208.28	0.264	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chiorobenzene	112.56	0.171	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	106.17	0.308	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
<i>m&p</i> -Xylene	106.17	0.473	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	106.17	0.227	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	104.15	0.181	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachioroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	157.01	0.127	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	134.22	0.301	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND	ND	ND	.ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	134.22	0.276	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	260.76	0.461	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	128.17	0.715	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sample Condition (S,U)/Diluti S: Satisfactory, U: Unsatisfa	` '		1	S	s	S	S	S	S	S	S	s	s

SAMPLE NARRATIVE:

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: Samples Received: Samples Analyzed: Samples Reported: 9/8/97 NTC, ORLANDO Project Identification: Target Job Code: **ABT002**

Purchase Order:

8/21/97 - 8/28/97 8/25/97 - 9/3/97 8/26/97 - 9/8/97

Collected by: Received by: Analyzed by: Reported by: Report Revision:

Method Deviations:

Sampling Method:

ABB-ES **Guy Auld** Guy Auld **Guy Auld**

0.0

none

Client: Client Address:

Client Fax:

ABB-ES

407-896-6150

1080 Woodcock Road, Suite 100

Orlando, FL 32803

Client Contact: John Kaiser Client Phone: 407-895-8845

Passive soil gas USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

									LABDUP	•			
				30V-	36V-								
Compound	MW ¹	MDL ²	PQL ³	02601	01101	01001	00901	00801	02401	00801D	07201	07101	04501
	(g/mole)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND									
Chloromethane	50.49	0.559	10.0	ND									
Vinyl Chloride	62.50	1.011	10.0	ND									
Bromomethane	94.94	0.444	10.0	ND									
Chloroethane	64.51	0.341	10.0	ND	ND "	ND							
Trichlorofluoromethane	138.38	0.334	10.0	ND									
1,1-Dichloroethene	96.94	0.298	2.50	ND									
Methylene Chloride	84.93	0.448	2.50	ND									
trans -1,2-Dichloroethene	96.94	0.419	2.50	ND									
1,1-Dichloroethane	98.96	0.488	2.50	ND									
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND									
Chloroform	119.38	0.472	2.50	ND									
1,1,1-Trichloroethane	133.40	0.465	2.50	ND									
Carbon Tetrachloride	153.82	0.421	2.50	ND									
Benzene	78.11	0.496	2.50	ND									
1,2-Dichloroethane	98.96	0.639	2.50	ND									
Trichloroethylene	131.39	0.135	2.50	ND									
1,2-Dichloropropane	112.99	0.121	2.50	ND									
Bromodichloromethane	163.83	0.161	2.50	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND
Dibromomethane	173.83	0.525	2.50	ND									
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND									
Toluene	92.14	0.156	2.50	ND									
trans-1,3-Dichloropropene	110.97	0.412	2.50	ND									
1,1,2-Trichloroethane	133.40	0.551	2.50	ND									
Tetrachloroethylene or PCE	165.83	0.231	2.50	ND									
Dibromochloromethane	208.28	0.264	2.50	ND									
1,2-Dibromoethane	187.86	0.562	2.50	ND									
Chlorobenzene	112.56	0.171	2.50	ND									
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50 2.50	ND									
Ethylbenzene	106.17	0.308		ND									
m&p-Xylene	106.17	0.473	5.00	ND									
o-Xylene	106.17	0.227 0.181	2.50 2.50	ND ND	ND								
Styrene	104.15	0.161		ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	120.19	0.338	2.50 2.50	ND ND	ND ND	ND ND	ND						
Bromoform	252.73 167.85	0.536	2.50	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane	147.43	0.451	2.50	ND									
1,2,3-Trichloropropane Bromobenzene	157.01	0.451	2.50	ND	ND '								
	134.22	0.127	2.50	ND									
tert-Butylbenzene	134.22	0.290	2.50	ND									
sec -Butylbenzene 1,3-Dichlorobenzene	147.00	0.084	2.50	ND									
· · · · · · · · · · · · · · · · · · ·	147.00	0.047	2.50	ND									
1,4-Dichlorobenzene	147.00	0.164	2.50	ND									
1,2-Dichlorobenzene	134.22	0.104	2.50	ND									
n-Butylbenzene	134.22	0.406	2.50	ND									
1,2,4-Trichlorobenzene Hexachlorobutadiene	260.76	0.461	2.50	ND	ND ND								
Naphthalene	128.17	0.461	2.50	ND	ND ND	ND							
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND									
Sample Condition (S,U)/Dilut S: Satisfactory, U: Unsatisfa	, ,		1	s	s	s	s	s	s	S	s	s	S

S: Satisfactory, U: Unsatisfactory

AMPLE NARRATIVE:

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: 8/21/97 - 8/28/97 Collected by: ABB-ES Client: ABB-ES 1080 Woodcock Road, Suite 100 Samples Received: 8/25/97 - 9/3/97 Received by: **Guy Auld** Client Address: Samples Analyzed: 8/26/97 - 9/8/97 Analyzed by: **Guy Auld** Orlando, FL 32803 Samples Reported: 9/8/97 Reported by: **Guy Auld** Project Identification: NTC, ORLANDO Report Revision: 0.0 Client Contact: John Kaiser Target Job Code: **ABT002** Method Deviations: Client Phone: 407-895-8845 none Purchase Order: Sampling Method: Passive soil gas Client Fax: 407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

				LABDUP	LABDUP								
				36V-	36V-	36V-	30V-						
Compound	MW ¹	MDL ²	PQL ³	04701	00501	00601	00301	00401	00501	00501D	00601	00701	01601
	(g/mole)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND
Chloromethane	50.49	0.559	10.0	ND									
Vinyl Chloride	62.50	1.011	10.0	ND									
Bromomethane	94.94	0.444	10.0	ND									
Chloroethane	64.51	0.341	10.0	ND									
Trichlorofluoromethane	138.38	0.334	10.0	ND									
1,1-Dichloroethene	96.94	0.298	2.50	ND									
Methylene Chloride	84.93	0.448	2.50	ND									
trans -1,2-Dichloroethene	96.94	0.419	2.50	ND									
1.1-Dichloroethane	98.96	0.488	2.50	ND									
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND									
Chloroform	119.38	0.472	2.50	ND									
1.1.1-Trichloroethane	133.40	0.465	2.50	ND									
Carbon Tetrachloride	153.82	0.421	2.50	ND									
Benzene	78.11	0.496	2.50	ND									
1,2-Dichloroethane	98.96	0.639	2.50	ND									
Trichloroethylene	131.39	0.135	2.50	ND									
1,2-Dichloropropane	112.99	0.121	2.50	ND									
Bromodichloromethane	163.83	0.161	2.50	ND									
Dibromomethane	173.83	0.525	2.50	ND									
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND									
Toluene	92.14	0.156	2.50	ND									
trans-1,3-Dichloropropene	110.97	0.412	2.50	ND.	ND								
1,1,2-Trichloroethane	133.40	0.551	2.50	ND									
Tetrachloroethylene or PCE	165.83	0.231	2.50	ND									
Dibromochloromethane	208.28	0.264	2.50	ND									
1,2-Dibromoethane	187.86	0.562	2.50	ND									
Chlorobenzene	112.56	0.171	2.50	ND									
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND									
Ethylbenzene	106.17	0.308	2.50	ND	ND .	ND							
m&p-Xylene	106.17	0.473	5.00	ND									
o-Xylene	106.17	0.227	2.50	ND									
Styrene	104.15	0.181	2.50	ND									
Isopropylbenzene	120.19	0.339	2.50	ND	ND .	ND							
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND.	ND ·	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND									
1,2,3-Trichloropropane	147.43	0.451	2.50	ND									
Bromobenzene	157.01	0.127	2.50	ND									
tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND	ND	ND.	, ND	ND	ND	ND	ND
sec -Butylbenzene	134.22	0.301	2.50	ND									
1,3-Dichlorobenzene	147.00	0.084	2.50	. ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND.	ND							
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND
n-Butylbenzene	134.22	0.276	2.50	ND									
1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND									
Hexachlorobutadiene	260.76	0.461	2.50	ND									
Naphthalene	128.17	0.715	2.50	ND									
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND									
Sample Condition (S,U)/Dil	ution (PQL)		1	s	S	S	s	S	s	s	s	s	s
0. 0.41-f4	. .												

S: Satisfactory, U: Unsatisfactory U: see sample narrative

SAMPLE NARRATIVE:

Quality Control Analyst:

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: Samples Received: Samples Analyzed:

8/21/97 - 8/28/97 8/25/97 - 9/3/97 8/26/97 - 9/8/97 9/8/97

Collected by: Received by: Analyzed by:

ABB-ES **Guy Auld Guy Auld** Client: Client Address: ABB-ES

1080 Woodcock Road, Suite 100

Orlando, FL 32803

Samples Reported: Project Identification: Target Job Code: Purchase Order:

NTC, ORLANDO **ABT002**

Reported by: Report Revision: Method Deviations:

0.0 none Passive soil gas Sampling Method:

Guy Auld

Client Contact: Client Phone: Client Fax:

John Kaiser 407-895-8845 407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW ¹ (g/mole)	MDL² (ug/L)	PQL ³ (ug/L)	30V- 01501 (ug/L)	30V- 01401 (ug/L)	30V- 01301 (ug/L)	30V- 01201 (ug/L)	30V- 02701 (ug/L)	30V- 02801 (ug/L)	30V- 02901 (ug/L)	30V- 03101 (ug/L)	30V- 03101D (ug/L)	30V- 07501 (ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	50.49	0.559	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
•	94,94	0.444	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane Chloroethane	64.51	0.341	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	96.94	0.334	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	84.93	0.448	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		0.419	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans -1,2-Dichloroethene	96.94 98.96	0.419	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane			2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	96.94	0.455				ND	ND	ND	. ND	ND	ND	ND	ND
Chloroform	119.38	0.472	2.50	ND	ND		ND	56 1 1 1	4.1 12 22 3	ND	ND		ND
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND		ND ND	ND ND	ND ND	ND	ND ND	ND
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND	ND	the state of the state of	and the second second	and the second second		the second section of the second	
Benzene	78.11	0.496	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	98.96	0.639	2.50	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	131.39	0.135	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	112.99	0.121	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	163.83	0.161	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	173.83	0.525	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .
Toluene	92.14	0.156	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans -1,3-Dichloropropene	110.97	0.412	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene or PCE	165.83	0.231	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	208.28	0.264	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	112.56	0.171	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	106.17	0.308	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	106.17	0.473	5.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	106.17	0.227	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	104.15	0.181	2.50	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND	, ND	ND	ND	ND	ND
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachioroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND ₁	ND
Bromobenzene	157.01	0.127	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	134.22	0.301	2.50	ND	ND	ND	ND	ND	ND -	ND	ND	ND	ND
1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	134.22	0.276	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	260.76	0.461	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	128.17	0.715	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sample Condition (S,U)/Dilut S: Satisfactory, U: Unsatisfa			1	s	s	s	s	s	s	S	S	S	S

SAMPLE NARRATIVE:

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

Target Environmental Services, Inc.

Mobile Laboratory Services

i	Samples Collected:	8/21/97 - 8/28/97	Collected by:	ABB-ES	Client:	ABB-ES
•	Samples Received:	8/25/97 - 9/3/97	Received by:	Guy Auld	Client Address:	1080 Woodcock Road, Suite 100
•	Samples Analyzed:	8/26/97 - 9/8/97	Analyzed by:	Guy Auld		Orlando, FL 32803
_	Samples Reported:	9/8/97	Reported by:	Guy Auld		0.1
•	Project Identification:	NTC, ORLANDO	Report Revision:	0.0	Client Contact:	John Kaiser
	Target Job Code:	ABT002	Method Deviations:	none	Client Phone:	407-895-8845
	Purchase Order:		Sampling Method:	Passive soil das	Client Fax:	407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

Compound	MW¹ (g/mole)	MDL² (ug/L)	PQL ³ (ug/L)	30∨- 04501 (ug/L)	30∨- 04401 (ug/L)	30V- 04301 (ug/L)	LABDUP 30V- 07401 (ug/L)	LABDUP 30V- 04301 (ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND	ND	ND	ND	ND
Chloromethane	50.49	0.559	10.0	ND	ND	ND	ND	ND
Vinyl Chloride	62.50	1.011	10.0	ND	ND	ND	ND	ND
Bromomethane	94.94	0.444	10.0	ND	ND	ND	ND	ND
Chloroethane	64.51	0.341	10.0	ND	ND	ND	ND	ND
Trichlorofluoromethane	138.38	0.334	10.0	ND	ND	ND	ND	ND
1.1-Dichloroethene	96.94	0.298	2.50	ND	ND	ND	ND	ND
Methylene Chloride	84.93	0.448	2.50	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	96.94	0.419	2.50	ND	ND	ND	ND	ND
1,1-Dichloroethane	98.96	0.488	2.50	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	96.94	0.455	2.50	ND	ND	ND	ND	ND
Chloroform	119.38	0.472	2.50	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	133.40	0.465	2.50	ND	ND	ND	ND	ND
Carbon Tetrachloride	153.82	0.421	2.50	ND	ND	ND	ND	ND
Benzene	78.11	0.496	2.50	ND	ND	ND	ND	ND
1.2-Dichloroethane	98.96	0.639	2.50	ND	ND	ND	ND	ND
Trichloroethylene	131.39	0.135	2.50	ND	ND	ND	ND	ND
1,2-Dichloropropane	112.99	0.133	2.50	ND	ND	ND	ND	ND
Bromodichioromethane	163.83	0.121	2.50	ND	ND	ND	ND	ND
Dibromomethane	173.83	0.525	2.50	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND	ND	ND	ND	ND
Toluene	92.14	0.156	2.50	ND	ND	ND	ND	ND
trans -1,3-Dichloropropene	110.97	0.130	2.50	ND	ND	ND	ND	10 10 10 10
1,1,2-Trichloroethane	133.40	0.551	2.50	ND	ND	ND	ND	ND
Tetrachloroethylene or PCE	165.83	0.231	2.50	ND	ND	ND	ND	ND
Dibromochloromethane	208.28	0.264	2.50	ND	ND	ND	ND	ND ND
1.2-Dibromoethane	187.86	0.562	2.50	ND	ND	ND	ND	ND
Chlorobenzene	112.56	0.171	2.50	ND	ND	ND	ND	ND
1,1,1,2-Tetrachioroethane	167.85	0.117	2.50	ND	ND	ND	ND	ND
Ethylbenzene	106.17	0.308	2.50	ND	ND	ND	ND	ND
m&p-Xylene	106.17	0.473	5.00	ND	ND	ND	ND	ND
o-Xyiene	106.17	0.227	2.50	ND	ND	ND	ND	ND
Styrene	104.15	0.181	2.50	ND	ND	ND	ND	ND
Isopropylbenzene	120.19	0.339	2.50	ND	ND	ND	ND	ND
Bromoform	252.73	0.338	2.50	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND	ND	ND	ND	ND
1.2.3-Trichloropropane	147.43	0.451	2.50	ND	ND	ND	ND	ND
Bromobenzene	157.01	0.127	2.50	ND	ND	ND	ND	ND
tert-Butylbenzene	134.22	0.296	2.50	ND	ND	ND	ND	ND
sec -Butylbenzene	134.22	0.301	2.50	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	147.00	0.084	2.50	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	147.00	0.047	2.50	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	147.00	0.164	2.50	ND	ND	ND	ND	ND
n-Butylbenzene	134.22	0.276	2.50	ND	ND	ND	ND	ND
1.2.4-Trichlorobenzene	181.45	0.406	2.50	ND	ND	ND	ND	ND
Hexachlorobutadiene	260.76	0.461	2.50	ND	ND	ND	ND	ND
Naphthalene	128.17	0.715	2.50	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND	ND	ND	ND	ND
Sample Condition (S,U)/Diluti S: Satisfactory, U: Unsatisfa			1 .	s	s	s	S	s

S: Satisfactory, U: Unsatisfactory

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable SAMPLE NARRATIVE:

in a Target Environmental Services, Inc.

Mobile Laboratory Services

Samples Collected: Samples Received: Samples Analyzed: Samples Reported:

8/21/97 - 8/28/97 8/25/97 - 9/3/97 8/26/97 - 9/8/97

Collected by: Received by: Analyzed by: Reported by:

ABB-ES Guy Auld

Guy Auld Guy Auld Client Address:

Client:

ABB-ES 1080 Woodcock Road, Suite 100

Orlando, FL 32803

Project Identification: Target Job Code: Purchase Order:

9/8/97 NTC, ORLANDO **ABT002**

Report Revision: Method Deviations: Sampling Method:

0.0 none Passive soil gas **Client Contact:** Client Phone: Client Fax:

John Kaiser 407-895-8845 407-896-6150

USEPA Method 8260 Passive Soil Gas Sample Analysis Results (in ug/L)

		_		30V-	30∨-	30V-	30V-						
Compound	MW ¹	MDL ²	PQL ³	07501D	07401	07301	07701	06301	06101	06001	05901	04701	04601
	(g/mole)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	120.91	0.688	10.0	ND									
Chloromethane	50.49	0.559	10.0	ND									
Vinyl Chloride	62.50	1.011	10.0	ND									
Bromomethane	94.94	0.444	10.0	ND									
Chloroethane	64.51	0.341	10.0	ND									
Trichlorofluoromethane	138.38	0.334	10.0	ND									
1,1-Dichloroethene	96.94	0.298	2.50	ND									
Methylene Chloride	84.93	0.448	2.50	ND									
trans -1,2-Dichloroethene	96.94	0.419	2.50	ND									
1,1-Dichloroethane	98.96	0.488	2.50	ND									
cis -1,2-Dichloroethene	96.94	0.455	2.50	ND									
Chloroform	119.38	0.472	2.50	ND									
1,1,1-Trichloroethane	133.40	0.465	2.50	ND									
Carbon Tetrachloride	153.82	0.421	2.50	ND									
Benzene	78.11	0.496	2.50	ND									
1,2-Dichloroethane	98.96	0.639	2.50	ND	ND.	ND	ND						
Trichloroethylene	131.39	0.135	2.50	ND									
1,2-Dichloropropane	112.99	0.121	2.50	ND									
Bromodichloromethane	163.83	0.161	2.50	ND									
Dibromomethane	173.83	0.525	2.50	ND									
cis-1,3-Dichloropropene	110.97	0.306	2.50	ND									
Toluene	92.14	0.156	2.50	ND									
trans -1,3-Dichloropropene	110.97	0.412	2.50	ND									
1,1,2-Trichloroethane	133.40	0.551	2.50	ND									
Tetrachloroethylene or PCE	165.83	0.231	2.50	ND									
Jibromochloromethane	208.28	0.264	2.50	ND									
1,2-Dibromoethane	187.86	0.562	2.50	ND									
Chlorobenzene	112.56	0.171	2.50	ND									
1,1,1,2-Tetrachloroethane	167.85	0.117	2.50	ND									
Ethylbenzene	106.17	0.308	2.50	ND									
m&p-Xylene	106.17	0.473	5.00	ND									
o-Xylene	106.17	0.227	2.50	ND									
Styrene	104.15	0.181	2.50	ND									
Isopropylbenzene	120.19	0.339	2.50	ND									
Bromoform	252.73	0.338	2.50	ND									
1,1,2,2-Tetrachloroethane	167.85	0.649	2.50	ND	ND .	ND							
1,2,3-Trichloropropane	147.43	0.451	2.50	ND									
Bromobenzene	157.01	0.127	2.50	ND									
tert-Butylbenzene	134.22	0.296	2.50	ND									
sec-Butylbenzene	134.22	0.301	2.50	ND									
1,3-Dichlorobenzene	147.00	0.084	2.50	ND									
1,4-Dichlorobenzene	147.00	0.047	2.50	ND									
1,2-Dichlorobenzene	147.00	0.164	2.50	ND									
n-Butylbenzene	134.22	0.276	2.50	ND									
1,2,4-Trichlorobenzene	181.45	0.406	2.50	ND									
Hexachlorobutadiene	260.76	0.461	2.50	ND									
Naphthalene	128.17	0.715	2.50	ND									
1,2,3-Trichlorobenzene	181.45	0.573	2.50	ND									
Sample Condition (S,U)/Dilut S: Satisfactory, U: Unsatisfa			1	s	s	s	s	s	s	s	s	s	s

S: Satisfactory, U: Unsatisfactory

AMPLE NARRATIVE:

Quality Control Analyst:

U: see sample narrative

Dilution: numerical dilution factor used to quantitate analyte concentrations within the range of the initial calibration curve

¹ MW: Molecular Weight

² MDL: Method detection limit according to EPA 40CFR Part 136 Appendix B

³ PQL: Practical quantitation limit using the initial calibration curve low point and dilution factors where applicable

APPENDIX C

er filotor governoù evel per elle bene trop e e genoù gale e, le 1, 1 genere e lifere fige

SOIL BORING LOGS, MONITORING WELL CONSTRUCTION DETAILS, AND GROUNDWATER SAMPLING FIELD DATA SHEETS

		Point of Interest:
SOIL BORING LOG		Soring No.: 0LD-30-01
Client: NAVY	Project No. 02530.05	Protection: D
Contractor: GPI	Date Started: 10/9/97	Completed: 10/9/97
Method: Hollan Stem	Casing Size:	PI Meter: PSTA FID
Ground Elev.:	Soil Drilled:	Total Depth: 16 ft
Logged by: J. Nash	Checked by:	Below Ground:
Screen: 10 (ft.) Riser.	6 (tt.) Diam: 2, n (ID) Material: PVC	Page / of: /

PROPORTIONS

(-) AMOUNT (+)

ABBREVIATIONS

c = coarse

Trace (F) Limis (N) Some (so) and 0-10% 10-20% 20-35% 35-50%

i = fineGt = Gtsy ದ = ಗಾಕ್ಟ್ ಬದ האסים = מב

blk = black

MS - Split Spoon BW - Screened Auger HP = Hydropunch

		Point of Interest:
SOIL BORING LOG		Boring No.: OLD -30-02
Client: NAVY	Project No. 02530 05	Protection: D
Client: NAVY Contractor: GPI	Date Started: 10/9/97	Completed: 10/9/97
	Casing Size:	PI Meter: Porta FID
Method: Hollow Stem		Total Depth: 16 ft
Ground Elev.:	Soil Drilled:	▼ Below Ground:
Logged by: J. Nash	Checked by:	Page / of: /
Screen: 10 (ft.) Riser.	5 (ft.) Diam: 2 (ID) Material: PVC	Page / of: /

PROPORTIONS

(-) AMOUNT (-)

ABBREVIATIONS

Trace (II) Little (II) Some (so)

ಖಾರ

0-10% 10-20% 20-35%

35-50%

f = fine gr = gray
m = medium bn = brown
c = coarse bik = black

MS = Split Spoon BW = Screened Auger HP = Hydropunch

		Point of Interest:
SOIL BORING LOG		Boring No.: 020 - 30 - 63
Client: NAVY	Project No. 02530.05	Protection: D
Contractor: GPI	Date Started: 10/10/99	Completed: 10/10/97
Method: Hollow Stem	Casing Size:	Pi Meter: Po. Ta FID
Ground Elev.:	Soil Drilled:	Total Depth: 16 St
Logged by: J. Nash	Checked by:	▼ Below Ground:
Screen: jO (ft.) Riser:	5 (tt.) Diam: Zin (ID) Material: PVC	Page / of: /

blk = black

C = CD2'50

20-35%

35-50%

ಖಾರ

HP - Hydropunch

		Point of Interest:
SOIL BORING LOG		Boring No.: 01D - 30-04
Client: NAVY	Project No. 02530.05	Protection: D
Contractor: GPT	Date Started: 10/10/97	Completed: 10/16/97
Method: Hollow Stem	Casing Size:	PI Meier: Porta FID
Ground Elev.:	Soil Drilled:	Total Depth: 16 ft
Logged by: J. Nash	Checked by:	Below Ground:
Screen: 10 (ft.) Riser:	5 (ft.) Diam: 21 (ID) Material: PVC	Page / of: /

PROPORTIONS

(-) AMOUNT (-)

ABBREVIATIONS

c - carse

Trace (F) Limis (II) Some (so)

ಖಾರ

0-10% 10-20% 20-35% 35-50% f = fine gr = grzy

bn = brown B bik = black H

MS = Split Spoon BW = Screened Auger HP = Hydropunch

		Point of Interest:
SOIL BORING LOG		Boring No.: 010-30-05
Client: NAVY	Project No. 02530.05	Protection: D
Contractor: GPE	Date Staned: 10/10/97	Completed: 10/10/97
Method: Hollow Stem	Casing Size:	Pl Meier: Porta FID
Ground Elev.:	Soil Drilled:	Total Depth: 16 ft
Logged by: J. Nash	Checked by:	Below Ground:
Screen: 10 (ft.) Riser:	5 (tt.) Diam: 2 in (ID) Material: PVC	Page of: (

PROPORTIONS

(-) AMOUNT (+)

ABBREVIATIONS

Tracs (F) Some (so) ಖಾರ

0-10% 10-20% 23-35% 35-50%

កា = ភាឌ៩មែកា blk = black c = ccarse

MS = Split Spoon BW = Screened Auger HP = Hydropunch

		Point of Interest:
SOIL BORING LOG		Boring No.: 0LD - 30 -06
Client: NAVY	Project No. 02530.05	Protection: p
Contractor: GPI	Date Started: 10/15/97	Completed: 10/10/97
Method: Hollow Stem	Casing Size:	Pl Meier: Poita FID
Ground Elev.:	Soil Drilled:	Total Depth: 16 ft
Logged by: J. Nash	Checked by:	Below Ground:
Screen: jo (ft.) Riser.	5 (ft.) Diam: 2 in (ID) Material: PVC	Page / of: /

Trace (F) Limis (N)

0-10% 10-20% 20-35%

f = fine gr = gray ಣ = ಶಾಕರೇರಣ bn = brown c = carse

MS = Split Spoon BW = Screened Auger

Some (so) ಖಾರ

35-50%

blk = black

HP = Hydropunch

		Point of Interest:
SOIL BORING LOG		Boring No.: OLD -30-07
Client: NAVY	Project No. 03530.05	Protection: D
Contractor: GPI	Date Started: 10/10/9>	Completed: 10/15/97
Method: Hellow Stem	Casing Size:	Pl Meier: Poita FID
Ground Elev.:	Soil Drilled:	Total Depth: 16 St
Logged by: J. Mash	Checked by:	Below Ground:
Screen: 10 (ft.) Riser:	5 (tt.) Diam: 2 in (ID) Material: PVC	Page / of: /

PROPORTIONS

(-) AMOUNT (-)

ABBREVIATIONS

c = coarse

Trace (tr) Links (II) Some (so) and

0-10% 10-20% 20-35% 35-50% i = finegr = gray bn - brown ಗಾ 🗕 ಗಾಜರೇಭಗಾ

bik - black

MS = Split Spoon BW = Screened Auger HP = Hydropunch

SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OLD-30-01

DATE OF INSTALLATION: 10

- L Height of Casing above ground:
- 2. Depth to first Coupling: 6'
 Coupling Interval Depths: MA
- 3. Total Length of Riser Pipe: 6
- 4. Type of Riser Pipe: 211 School 40 PUC
- 5. Length of Screen: 10
- 6. Type of Screen: 2" 0,010 stat
- 7. Length of Sump: 60
- 8. Total Depth of Boring 6
- 9. Diameter of Boring: 10(1
- 10. Depth to Bottom of Screen: 16
- Guantity Used: 450Kb
- 12. Depth to Top of Filter: H
- 13. Type of Seat: 30/65 Sacr
- Ovantity Used: NR
- 14. Depth to Top of Seat: 2'
- 15. Type of Grout: PAD

Grout Mixture:

Hethod of Placement:

18. Tot. Depth of 6 in Steel Casing: NA

SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMANO
CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OLD-30-072 DATE OF INSTALLATION: 10-91

L Height of Casing above ground: Fm

2. Depth to first Coupling: 5

Coupling Interval Depths: NA

3. Total Length of Riser Pipe: 5'

4. Type of Riser Pipe: 2" School 40 Puc

5. Length of Screen: 10

6. Type of Screen 211 0.010 Stat

7. Length of Sump: 6"

8. Total Depth of Boring 15'

9. Diameter of Boring: 10'1

10. Depth to Bottom of Screen: 15/

IL Type of Screen Filter: Sand

Guantily Used: 450

Size:

12. Depin to Top of Filter: 3

13. Type of Seal: 30/65 Soud

- Ovantily Used: WR

14. Depin to Top of Seal:

15. Type of Grout: PAD

Groul Hizlure:

Helhod of Placement:

15. Tot. Depth of 6 in Steel Casing: Not

SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OUD 30-03

DATE OF INSTALLATION: 10

- L Height of Casing above ground: Fun
- 2. Depth to lirst Coupling: S'
 Coupling Interval Depths: NA
- 3. Total Length of Riser Pipe: 5'
- 4. Type of Riser Pipe: 2" Scied 40 PUC
- 5. Length of Screen: 10'
- 6. Type of Screen: 2" 0.0 to Slot
- 7. Length of Sump: $6^{\prime\prime}$
- 8. Total Depth of Boring 15/
- 9. Diameter of Boring: 10"
- 10. Depin to Bottom of Screen: 15/
- Ovantity Used: 60016

12. Depth to Top of Filter: 3

- 13. Type of Seat: (3065
- Quantity Used: NR
- 14. Depin to Top of Seal:
- 15. Type of Grout: PAS

Grout Hixture:

Heihod of Placement:

18. Tot. Depth of 6 in Steel Casing: NA

SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OLD-30.04

DATE OF INSTALLATION: 10.1de

- L Height of Casing above ground: FM

 2. Depth to first Coupling: S'
 - Coupling Interval Depths: NA
- 3. Total Length of Riser Pipe: 57
- 4. Type of Riser Pipe: 2" School 40 Puc
- S. Length of Screen: 10
- 8. Type of Screen Oido Slot 2"
- 7. Length of Sump: 6"
- 8. Total Depth of Boring 15
- 9. Diameter of Boring: 10"
- 10. Depth to Bottom of Screen 15/
- Ouantily Used: Sooth

ollo Size: 20/32

- 12. Depth to Top of Filter: 3
- 13. Type of Seat: 30/65 500
 - Quantity Used: NR
- 14. Depth to Top of Seat:
- 15. Type of Grout: PAD

Grout Hizture:

Helhod of Placement:

15. Tol. Depth of 6 in Steel Casing:

SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OLD-30-65

DATE OF INSTALLATION: 10

					ground:	Fm
L	Height	οſ	Casing	above	ground.	'
	•				- 1	

- 2. Depth to first Coupling: 5'
 Coupling Interval Depths: NA
- 3. Total Length of Riser Pipe: 57
- 4. Type of Riser Pipe: 24 School 40 PUC
- 5. Length of Screen: 10'
- 6. Type of Screen Z" 0.010 Slot
- 7. Length of Sump: 61
- 8. Total Depth of Boring 15'
- 9. Diameter of Boring: 100
- 10. Depth to Bottom of Screen:
- 11. Type of Screen Filter: Sould

Size: 2

- 12. Depth to Top of Filter: 3
- 13. Type of Seal: 30/65 Sour
 - Ovantily Used: NR
- 14. Depin to Top of Seat: ____
- 15. Type of Grout: PAD

Grout Mixture:

Helhod of Placement:

16. Tol. Depth of 6 in Steel Casing:

SOUTHERN DIVISION NAVAL FACILITIES ENGINEERING COMMAND CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OLD-30.06 DATE OF INSTALLATION: 10-10

- L Height of Casing above ground: FM
- 2. Depth to first Coupling: 5 Coupling Interval Depths: MA
- 3. Total Length of Riser Pipe: 5
- 4. Type of Riser Pipe: 2" School HO Pu
- 5. Length of Screen 6
- 6. Type of Screen 2" 0.01056+
- 7. Length of Sump: 6"
- 8. Total Depth of Boring 15/
- 9. Diameter of Boring: 100
- 10. Depth to Bottom of Screen: 15
- IL Type of Screen Filer: Sand Guantity Used: 50016

12. Depth to Top of Filter: .

- 13. Type of Seat: 30/65
- Quantity Used: NE
- 14. Depth to Top of Seal:
- 15. Type of Grout: PAD

Groul Mixture:

Hethod of Placement: _

18. Tol. Depth of 8 in Steel Casing:

SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON, SC.

WELL CONSTRUCTION DETAIL

WELL NUMBER: OLD-3007

DATE OF INSTALLATION: 10

- L Height of Casing above ground:
- 2. Depth to first Coupling: S'

Coupling Interval Depths: NA

- 3. Total Length of Riser Pipe: 51
- 4. Type of Riser Pipe: 2" Sched 40 Puc
- 5. Length of Screen: 60
- 6. Type of Screen: 2" 0.010 Slot
- 7. Length of Sump: 64
- 8. Total Depth of Boring 15
- 9. Diameter of Boring:)0"
- 10. Depth to Bottom of Screen 15
- Ovantity Used: 5006

Size:

- 12. Depin to Top of Filter: 3
- 13. Type of Seat: 3065 sur
- Ovantily Used:
- 14. Depin to Top of Seals
- 15. Type of Grout: PAd

Grout Mixture:

Helhod of Placement:

18. Tot. Depth of 6 in Steel Casing: NX

			GROUNDW	ATER SAMPL	EFFELDI	ATA.		
	Project	IL ORI	ANDO	in the state of the second of		terest: SA 30		•
	Project Num	ber: 075	30, 0.5		Date: 11-	12/97		- ,,
	Sample Loca	ation ID: OL	<u>N-30-01</u>		21.1	and the second	~ ~ ~ ^ ^ / ·	
	Time: Start:	1250	End: <u> </u>	440	Signature	of Sampler: Will	Liam D. Ollo	
,	·	n <u>15.81</u> p.	Measured Historical	Top of Well Top of Protect Casing		Stick-up FM Ft.	Protective NA casing/Well Difference	ર. ભ
	Water Level/Well Date	ve u <u>7.27</u> f l	Well Material: X PVC SS	Weil Locked?:No	Well Dia.	2 inch 4 inch 5 inch	Casing Water Level Equip. Us K. Blect. Cond. Prot Roat Activated Press. Transduct	be .
	W Height of \	Vater Column X 8.54 Pt	* .16 GWR. (2 in.)85 GWR. (4 in.)15 GWR. (6 in.)15 GWR. (in.)	8 -	otal Gal Purged	Well Integrity: Prot. Casing Secure Concrete Collar intact Other	Yes N	
•	to ji	Puroino/S	empling Equipment Us	ed:		Decontaminatio	n Fluids Used :	
	_	If Used For) ng Sampling	Peristatiic Pump Submersible Pump	Equipment ID		(All That Apply at Loc Methanol (100		itar
	80 -		Bailer			Deionized Wa	ier	
	\$ 3	$\overline{\mathbf{x}}$	PVC/Silicon Tubing Tenon/Silicon Tubing			Hexane		
ili yeli taka wasa	- E		Airlit Hand Pums			HNO /D.I. Wa		
	<u> </u>	又	In-line Filter			None		
:	ŭ _		Press/Vac Fixer					
	5	Airvoc Ø	ppm Well Mouth	ppm Feld Ca	iz Collected X	Sample (In-line \(\sum_{\text{Turb}} \) In ContainerColo		Caudy
	0	Purpe Data	@	_ cu <i>@</i> 5	GH @	Gal. @	பே ச த	ial.
And the second	s s femp	erature, Dec. C	27.0	26.5	26.5	26.5	26.5	_
	PH. VI	168	4.22	4,16 6B	4.21	4.2 <u>0</u>	<u>4.25</u>	-
•	I fumbe		CTNTU 177-6	150/1	<u> 65</u> 179	0 198.9	1 <u>60 1</u>	-
	Crica Bisso	non - Recustion, wed Oxygen, ppm						_
					mental 2012 (Malace Production Block of Australia Anna Anna Anna Anna Anna Anna Anna An		and and an analysis of the second sec	9 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
	Analytical Para	meter / If Fill Filters	d Method		✓ I Sample Collected	Sample Bottle ID:	received by the first time for the first time of	e
	e voa E s svoa		HCL				<u>=', ===', ==</u>	- .
	Pest/PCB Pest/PCB Inorganics Explosives		400				-;==;==	-
	inorganies Explosives		HND,				=	_
	E E TPH S N TOC		н,so				<u>=', ===', ==</u>	-
	Nitrate		H'SO'		:		_''	- -
	~ 4				- 1'. 11 \ ~	10 to 15 0. 45 th	hildren Turki.	7:12 = 1
:	Notes:						filtered Turbi.	. <i>d</i>
	VOA SVOA Pest/PC8 Inorganics Explosives TPH TOC Nitrate Notes:					te + TPH + TS		J

Occ	oject NTC ORLA		ATER SAMPL		ATA erest: 5A 30	
Pro	oject Number: 025	30,05			12/97	
Sar	mple Location ID: OL	0-30-0	2			AL DODG-
Tim	ne: Start: 1035	End:	1235	Signature	of Sampler: WC	Utan P (1920
	Well Depth) 4.76 A.	Measured Historical	X Top of Well Top of Protect Casing	Well Riser : we (from groun	Stick-up <u>FM</u> Ft.	Protective NA Pt. Casing/Well Difference
	Depth to Water 4.98 Ft.	Well Material: X PVC SS	Well Locked?:	Wef Dia	* 2 inch 4 inch 5 inch	Water Level Equip. Used: Sect. Cond. Probe Roat Activated Press. Transducer
	Height of Water Column X	16 GaVR. (2 in.) 65 GaVR. (4 in.) 1.5 GaVR. (5 in.) GaVR. (in.)	7.	žľVol al Gal Pu rged	Well Integrity: Prot. Casing Secure Concrete Collar Intact Other	Yes No
	Puro ino/Sar	nolina Equipment Vs	ed:		Decontamination	n Fluids Used :
•		Penstatic Pump Submersible Pump Bailer Bailer PVC/Silicon Tubing Teflon/Silicon Tubing Airfit Hand Pump In-line Filter Press/Vac Filter	Equipment ID		All That Apply at Loc Methanol (100 25% Methanol (100 25% Methanol X Deionized Wa Liquinox Solut Hexane HNO 70.1. Wa Potable Water None	1%) / V75% ASTM Type II water ter ion ter Solution
	Purge Data Temperature, Deg. C pH, units Specific Conductivity (umhos/cm. © 25 Deg. 0 Oxidation - Reduction Disgolated Gaygers, ppin		7	Collected X	n-lineTurbi n ContainerColor Gal. @ 6	
Ans	alytical Parameter / I Field Filtered	Preservatio Method	n Volume Required	✓ I Sample Collected	Sample Bottle IOs	
Inor	VOA SVOA Pesu PCB rganics Explosives TPH TOC ate Notes:	HCL 40C 40C HN0; 4°C H S0, H S0, H S0,		 - - -filtere		su, f: (foned Turb.)
					suite + TPH 14=53,1 NT	

	GROUNDWA	TER SAMPLE		
	Project NTC OR LAWDD		Point of Interest SA	30
. 1. 2.	Project Number: 0 25 30,05		Date: 2-11/98	
	Sample Location ID: 040 - 30-0		· · · · · · · · · · · · · · · · · · ·	and M.
	Time: Start: (030 End: 13	205	Signature of Sampler:	NO PORON
- et	Well Depth 14.60 R. Measured Historical	Toe of Well Toe of Protective Casing	Well Riser Stick-up MR. (from ground)	Protective P. P. Casing Well Difference Protective P. P. Casing
Water Level/Well Data	Depth to Water 3.96 Pt. Well Material:	Well Locked?: 人 Yes No	Well Dia 2 inch 4 inch 5 inch 5	Water Level Equip. Used: ** Elect. Cond. Probe Roat Activated Press. Transducer
Water	大 .18 Gal/R. (2 in.) Height of Water Column X85 Gal/R. (4 in.) - 15 Gal/R. (6 in.) - Gal/R. (_in.)	1 /	Voil Veil Integrity: Prot. Casing Securing Concrete Collar Into Other	777
Illon	Purping/Sampling Equipment Used	1:	Decontamina	tion Fluids Used :
Equipment Documentation	(/ If Used For) Purging Sampling	Equipment 10	(/ All That Apply at I	
Ę	Penstatic Pump Submersible Pump			InoV75% ASTM Type il water
Š	Bailer PVC/Silicon Tubing		Deionizad Liquinax Se	
<u> </u>	Z Teton/Silicon Tubing		Hexane	Water Solution
<u></u>	Hand Pump		Potable Wa	
<u>.</u>	Ynirro Filter Pross/Vac Filter		None	·
	-			
200	Ambient Air VOC ppm Well Mouth	ppm Field Data Col	lected in-lineTu	e Observations: arbid X Clear _ Cloudy slered _ Odor
lysis Data	Purge Data @ In +	an o an	o 5 cu o 5-1	_cu. @ _6cu.
75	Temperature, Oed, C 21,9	22.7	22.9 22.8	7.55
	pH, units 6.69	6.57 498	6.66 6.71 49.5 492	6.73 489
Þ	Specific Conductivity (university: 0.00 (0.00) 17.99	13.63	15.45 15.61	15.52
Field Ans	Oxidation - Reduction, -/- mv	 		
	Disselved Oxygen, ppm	The second secon		
•	Analytical Parameter / If Field Preservation Filtered Method		1 Sample Sample Bottle Collected	io.
Sample Collection Requirements (/ # Requied a the Locaton)	VOA HCL			
들	SVCA 40C 40C 40C		/	
n Require	Inorganics HNC,			<u> </u>
Non A	TPH H SO H SO			''
100	Nitrate Hiso			
Collect Required	Notes:	- 20 C	- 00702 = ^	TAC metal5
5 ± 7			222-514	and motels
E 3		30 M	00 20 63 1111	
Ω		f: Ite	ned toubidity.	TAC metals enel metals = 0.72 NTU
		•		

		GROUNDWAIE	RSAMPLET	TELD DAT	\mathbf{A}_{i}		1. "
	roject NTC ORLAR			oint of Intere	st: <u>5A 30</u>		
P	Project Number: 0 2530	30-03)ate: 11-1	2197		
	Sample Location ID: OL D	End: 10	20	Signature of	Sampler:WU	im D. Olson	
e e	Well Depth 14.88 Ft.	Measured >	Top of Well Top of Protective Casing	Wet Riser Stick (from ground)	oup <u>FM</u> R.	Protective NA P. Casing/Well Ofference Protective NA P.	
Water Level/Well Data	Depth to Water 5,59 Ft.		ill Locked?: Yes No		2 inch 4 inch 6 inch	Casing Water Level Equip. Used: X Elect. Cond. Probe Roat Activated Press. Transducer	
Water L	Height of Water Column X			Pro Co	ill Integrity: X. Casing Secure nerete Collar Intact ner	Xea No X	
llon	Puroino/Sam	olina Equipment Used :			Decontamination	Fluids Used :	
Equipment Documentation		eristatic Pump ubmersible Pump ailer VC/Silicon Tubing ston/Silicon Tubing rift and Pump Line Filter	quipment (0		Methanol (100° 25% Methanol (100° 25% Methanol Deionized Water Liquinox Solutio Hexare HNO_/D.I. Water None	%) 75% ASTM Type II water on	en e
Field Analysis Data	Purge Data Purge Data Temperature, Deg. C pH, units Specific Conductivity (unitosicm. © 25 Deg. C.) Gridaben Reduction, win	26.0 50.0 613.5 420 103.1		<u></u>	Sample Of X Turbid ontainer Colore Co		
							 .
	Analytical Parameter / I Field Filtered	Preservation Method		f Sample Collected	Sample Bottle IDs		
-	•	Method HCL 40C 40C HN0; 4°C H,S0; H,S0;	30 H 00 301	Collected	";" ";" "ned metals,	0,45.u, Filters	Turb
	VOA SVOA Pest/PCB morganics Explosives TPH TOC	Method HCL 40C 40C HN0, 4°C H, S0 H, S0 H, S0	30 H 00 301	D, Filter	med metals, ide tTPH:	its5	Turk
-	VOA SVOA Pest/PCB morganics Explosives TPH TOC	Method HCL 40C 40C HN0, 4°C H, S0 H, S0 H, S0	30 H 00 30 I 30 G 00 30 I	D, Filter	med metals, ide tTPH:	1 TSS	Turk

			STATE OF A DATE OF	2 (2)	A 777 A	
	100 Table - 100 Major Amada Mayabin (1000) Table Table - 100		MERSAMPU www.upundeblokumperakonory.kuante	Point of Int		
	Project: NTC OR Project Number: 025	20.05			2 - U/a &	
	Project Number: 023	1-D = 30 =	0.3	O416:	2 47981	^^ ^
	Sample Location ID: 0	End:	1350	Signature	of Sampler:	80/20se~
	time: Start: 101.3	enc	<u> </u>	Orginatore	Of Sampler.	
ata	Well Depth 14.76 A.		Top of Well Top of Protecti Casing	Well Riser S we (from groun		Protective FMR. Casing/Well Difference Protective FMR. Casing
Water Level/Well Data	Depth to Water 4.72 FL	Well Material PVC SS	Well Locked?:No	Well Dia. 2	2 inch 4 inch 6 inch	Water Level Equip, Used: XBect. Cond. Probe Roar Activated Press. Transducer
Water	Height of Water Column X	7.18 GAVR. (2 in.) 	- [51/2 m	al/Vol	Well Integray: Prot. Casing Secure Concrete Coller Intact Other	Yes No
Ifon	<u>Purcinc/Se</u>	mplina Equipment Us	d:		Decontamination	Fluids Used:
Equipment Documentation	(/ If Used For) Purging Sampling	Penetable Pump Submerable Pump Bailer PVC/Silicon Tubing Teflon/Silicon Tubing Airth Hand Pump In-line Pitter Press/Vac Filter	Equipment 10		All That Apply at Loci Methanol (100' 25% Methanol Deionized Wat Liquinex Soluti Hexane HNO_0.1. Wat Potable Water None	%) (75% ASTM Type II water er on ler Solution
sis Data	Ambient Air VOC <u></u>	ppm Well Mouth	ppm Field Data	<u> </u>	Turbic Container Color	edOdor
Fleid Analysis I	Purpe Data Temperature, Deg. C pH, units Specific Conductivity (unitas/cm. @ 25-Beg. C Oxidation - Reduction, of Dissolved Cxygen, ppm	#	23.4 6.70 355 38.9	23.9 6.65 230 39.4	23.8 6.71 225 HI-8	23.3
=	Analytical Parameter / # Field Filtered		n Volume Required	/ f Sample Collected	Sample Bottle IOs	rought desistant extensional and an analysis of the second
Sample Collection Requirements (/ II Required at this Location)	VQA SVQA Peer/PCB Inorganes Explosives TPH TOC Nitrate Notes:	HCL 40C 40C HN0, 4°C H, S0 H, S0 H, S0	======================================	0030	= 1.37	metals red metals

The second secon

			the second second second	Point of Inte	rest: 5A 30)
				Date: if -	1/97	
			1120			1- > M.
Lift	ne: Start: 1210	Top of Protective (from ground) Casing Protective (IVA) P. Casing Protection (IVA) P. Casing Protection (IVA) P. Casing Protection (IVA) P. Casing Protection (IVA) Protec				
	Well Depth 14.89 R.		Top of Protec			Casing/Well Difference
						
	Depth to Water 6.61 FL	X PVC	X Yes	Wef Dia	4 inch	Elect. Cond. Probe Roat Activated
	Height of Water Column X	85 GaVP. (4 in.) 1.5 GaVP. (6 in.)	- a		Prot. Casing Secure Concrete Collar intact	Yes No
	(/ If Used For) Purging Sampling X X	Peretablic Pump Submersible Pump Bailer PVC/Silicon Tubing Teflon/Silicon Tubing Airfett Hand Pump In-line Filter			All That Apply at Loc Methanol (100 25% Methano Deiorized Wa Liquinor Solut Hexane HNO_/D.I. Wa Potable Water	ation) 176) V75% ASTM Type II water ter tion tter Solution
	Purge Data Temperature, Deg. C pH, units Specific Conductivity (umitos/cm; @ 25 Deg. 6	29.0 7.09 380 58.1	6-31 6-31 29.0	34 @ 7 V2 29.0 6,90 380		Clear & Cloudy Cl
A^					Sample Bottle (Os	
	VOA SVOA Pest/PCB srgaries	40C 40C HNO,		Ξ		

• •

	A STATE OF THE STA	The Conference of the Conferen
	GROUNDWATERSAM	
	roject NTC ORLANDO	Point of Interest: 5A 30
Pr	raject Number: <u>6 2530 105</u>	Date: 11~13/57
Sa Sa	ample Location ID: OLO: 30 705	$ \sim$ \sim \sim \sim \sim \sim
Ti	me: Start: 0912 End: 1146	Signature of Sampler: W The Policy
	Well Depth 14.87 R. X Measured Top of W Historical Casing	otective (from ground) Casing/Well Difference Protective P. Pt.
Water Level/Well Data	Depth to Water 10-28 Ft. Well Material: Well Locked?: Yes No	Well Dia. 2 inch Water Level Equip. Used: 4 inch Bect. Cond. Probe 5 inch Roat Activated Press. Transducer
Water I	Height of Water Column X55 Gal/R. (2 in.)	ZaziVol Well Integrity: Yins No Prot. Casing Secure Concrete Collar Intact Other
Hon	Puraina/Samplina Equipment Used:	Decontamination Fluids Used:
Equipment Documentation	(/ If Used For) Purging Sampling Equipment 10 Submersible Pump Bailer PVC/Silicon Tubing Airfit Hand Pump In-line Filter Press/Vac Filter	(/ All That Apply at Location) Methanol (100%) 25% Methanol/75% ASTM Type II water Oeionized Water Liquinox Solution Hexare HNO_/0.1, Water Solution Potable Water None
Field Analysis Data	Purge Data	4 7.34 7.12 7.22 2.43
	nelytical Parameter / If Field Preservation Volume Filtered Method Required	/ I Sample Sample Bottle IOs Collected
lon Re	VOA	00501=FUII Soile + TPM +TSS 00501=Filtored metals eved turbidty= 1.6NTU 1 turbidity= 19.2 NTU

		TER'SAMPLE			
# NTC OR		e de la companya de l			
				11.13/97	
	-D- 30.00	2		A1	ΛΛ α Ω -
Start: 1150	End:	1330	Signature	of Samplers	WD-000
leti Depth 14.95 R.	Measured Histonical	Top of Well Top of Protective Casing			Protective P. Casing Well Difference Protective P. Casing
epth to Water ^j (<u>· 35</u> PL	Weil Material PVC SS	Well Locked?: Yes No	Well Dia.	2 inch 4 inch 6 inch	Water Level Equip, Used: Elect. Cond. Probe Rost Activated Press. Transducer
ignt of Water Column X SeEO R.	X .18 GAVR. (2 in.) — 65 GAVR. (4 in.) — 1.5 GAVR. (6 in.) — GAVR. (_in.)	1 3	Vol Gal Purged	Well Integrity: Prot. Cazing Secure Concrete Collar Intact Other	Yes A
Purning/Sar	nolina Equipment Uses	l:		Decontamination	Fluida Used
= = = = = = = = = = = = = = = = = = = =	Submersible Pump Bailer PVC/Silicon Tubing Teflon/Silicon Tubing Urish Hand Pump n-line Filter	Equipment ID		Methanol (1007	6) 15% ASTM Type II water r n
ombient Air VOC 7			<u> </u>	Container Colorec	_Clear \(\sum_{\text{cloudy}} \)
	26.0 6.85 240 MU 71.3	26.5 6.49 215 80.4		27-0 6-41 19 6	27-0 6-45 190 87-8
ni Parameter / I Field Filtered	Preservation Method	Volume , Required	I Sample Collected	Sample Bottle IOs	
PCS	HCL 40C 40C HNO, 4°C H, SO, H, SO,	- 30 HOOG Filtered	0) = F	:; Hered me 16/17 = 1	tals 2.48N7U
	Purple Data Temperature, Deg. C ph. units Purple Data Temperature, Deg. C ph. units Specific Conductivity (unitos/em. @ 25 Deg. C) Oxidation - Reduction,	Start: 1150 End: Self Depth 14.95 R. X Measured Histonical Histon	The Location ID: OLD 30 OG Start: 11 G O End: 1330 Foliation ID: OLD 30 OG Start: 11 G O End: 1330 Foliation ID: OLD 30 OG Start: 11 G O End: 1330 Foliation ID: OLD 30 OG Start: 11 G O End: 1330 Foliation ID: OLD 30 OG Foliation ID: OLD	Date: Location ID: OLD 30 OC Start: 115 O End: 1330 Signature Eli Depth 14.95 R. Measured Historical Top of Protective (from ground of Water Column X 16 GaVR. (2 in.) Syon to Water Column X 55 GaVR. (4 in.) Self D.R. 15 GaVR. (6 in.) Submartitle Pump Submar	th Number: 0 2 5 3 0 0 5

	GROUNDWAT	TER SAMPLE FIELD DATA
· 	Project NTC ORLANDO	Point of Interest: 11-11 /97-
1	Project Number: 02530, 05	Date: 11-11/97
•	Sample Location ID: <u>0 LD - 30 - 0 +</u> Time: Start: <u>0 8 30</u> End:	145 Signature of Sampler: William D. Olson
et	Well Depth (4.98 Ft. X Measured Histonical	Top of Well Well Riser Stick-up FM R. Protective NA R. Casing Well Difference Casing Casing Protective NA R. Casing Well Difference Casing Well Difference Casing Well Difference Casing Well Difference Casing NA R. Casing
Water Level/Well Data	Depth to Water 7.01 Pt. Well Material: X PVC SS	Well Locked?: Well Dia. X 2 inch Water Level Equip. Used: X Yes 4 inch X Elect. Cond. Probe No 6 inch Press. Transducer
Water L	X.16 GaVR. (2 in.) Height of Water Column X 85 GaVR. (4 in.) = 7.97 R 1.5 GaVR. (6 in.) GaVR. (_ in.)	- Total Gal Purped Concrete Collar Intact Total Gal Purped Concrete Collar Intact Other
Equipment Documentation	Purging/Sempling Equipment Used (/ If Used For) Purging Sampling X Peristatic Pump Submersible Pump Bailer PVC/Silicon Tubing X Tefon/Silicon Tubing Airfit Hand Pump In-line Filter	Equipment ID (/ All That Apply at Location) Methanol (100%) 25% Methanol/75% ASTM Type II water Liquinost Solution Hexare HNO y/D.I. Water Solution Potable Water None
Floid Analysis Data	Press/Vac Filter Ambient Air VOC ppm Well Mouth pp	Description Sample Observations: Cloudy
2	Analytical Parameter / # Field Preservation Filtered Method	In Volume / I Sample Sample Bottle IOs Required Coffected
Sample Collection Requirements (/ Il Required at the Locaton)	VOA	30H00701/M5/M5D = filtered metals, 0,45h Filtered Turkidity = 1,04 NTU 30G00701 = Full suite + TPH + TSS 30G00701 MS/MSD = Full Suite FINAL Turbidity = 8.39 NTU

	GROUNDWATER	SAMPLEFIELD	DATA	and the state of t				
Project_NTCORL	ANDO	Point of I	nterest: 5A 3	<u> </u>				
Project Number: 025	30.05	Date: <u> </u>	_ Date: 11-13/97 _ Existing complaince well for whate o. L					
Sample Location ID: <u>OL</u>		Existing (compliance well	M A -O.				
Time: Start: 0745	End: <u>090</u>	2 Signatu	re of Sampler: Aug	3.012n				
Well Depth 12,07 Ft.	Measured Historical	Top of Well Well Risk Top of Protective (from gro Casing	er Stick-up Ft.	Protective Ft. Casing/Well Difference Protective Ft. Casing				
Depth to Water FL.		ocked?: Well Dia. Yes No	2 inch 4 inch 5 inch	Water Level Equip, Used: Elect. Cond. Probe Roat Activated Press. Transducer				
Height of Water Column X	16 GWR. (2 in.) 65 GWR. (4 in.) = 	GalVol	Well Irregmy: Prot. Casing Secure Concrete Collar Intact Other	Yes No				
E Puraina/Sa	molina Equipment Used :		Decontaminatio	n Fluids Used :				
Burging/Se (/ If Used For) Purging Sampling	Peristatic Pump Submersible Pump Bailer PVC/Silicon Tubing Teflor/Silicon Tubing Airfit Hand Pump In-line Filter Press/Vac Filter	ipment ID	(/ All That Apply at Lower Methanol (10 25% Methanol (10 25% Methanol Ocionized Williams Solu Hexane HNO 40.1. W. Potable Wate None	0%) N75% ASTM Type II water ster tion ater Solution				
Ambient Air VOC	_ ppm Well Mouthppr	n Field Data Collected	Sample Sample In-line Turb					
Purge Data Purge Data Temperature, Deg. C pH, units Specific Conductivity (umhos/cm. @ 25 Deg. C Oxidation - Reduction, - Dissolved Oxygen, ppm		GL O	Gal. @	GU. GU.				
Analytical Parameter / I Fiel Filtered VOA SVOA PesuPCB Inorganics Explosives TPH TOC Nitrate Notes:		Volume						
VOA	_ HCL _		—— <u>/</u> —					
SVOA SPERIPOR S I POER PCB I POER S Explosives SE TPH IN TOC DE Nitrate Notes:	40C			<u> </u>				
Inorganies Explosives	HND,		/	<u></u>				
TPH	.–- ⊬,so <u> </u>							
N TOC	H 50			=', <u></u> ',				
Notes:								
ė		Annual Control of the	en englise de la companya de la comp	er en en en en en en perference en				
5			and the state of the second state of	en en en 1925 en eus en ensemble en en entre frant de la france de la companya de la companya de la companya de				
	A 44 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1							
		and the second s						

APPENDIX D

SUMMARY OF POSITIVE DETECTIONS TABLES

Table D-1	Summary of Positive Detections in Surface Soil
Table D-2	Summary of Positive Detections in Subsurface Soil
Table D-3	Summary of Positive Detections in Groundwater

TABLE D-1 SUMMARY OF POSITIVE DETECTIONS IN SURFACE SOIL

no ostanem menerala de la companie de comunicación de la companie de cuajo, as mangenes la cual enjópe efeccio

	Background	SCG for	RBC ³ for	RBC ³ for Industrial							
Sample ID	Screening 1	Residential Soil 2	Residential Soil	Soil	30S00101	30S00201	30S00301	30S00401	30S00501	30S00601	30S00701
Sampling Date					10/23/97	10/23/97	10/23/97	10/23/97	10/23/97	10/23/97	10/23/97
Volatile Organics, ug/kg											
2-Butanone		2,200,000	47,000,000 i	1,000,000,000 n							22
Semivolatile Organics, ug/kg											14 J
Acenaphthene										40 1	14 J
Acenaphthylene		670,000	2,300,000 n	61,000,000 n						12 J	10 J
Anthracene		20000000	23,000,000 n	610000000 n	15 J	<u> </u>	-			15 J	32 J
Benzo(a)anthracene		1,400	880 c	7,800 c	130 J		<u> </u>	8 J		38 J	32 J 44 J
Benzo(a)pyrene		100	88 c	780 c	140 J		11 J	10 J	7 J	55 J	84 J
Benzo(b)fluoranthene		1,400	880 c	7,800 c	270 J	12 J	13 J	16 J	13 J	13 J	28 J
Benzo(g,h,i)perylene		14,000	2300000 n	61,000,000 n	56 J		 	5 J 7 J		13 J	35 J
Benzo(k)fluoranthene		14,000	8,800 c	78,000 c	110 J		70 1	/ J	69 J		54 J
Butylbenzylphthalate		15,000,000	16,000,000 n	410,000,000 n		58 J	73 J	4.0	8 7	16 J	39 J
Chrysene		140,000	88,000 c	780,000 c	100 J	7 J		10 J	8 3	101	39 3
Di-n-butylphthalate		7,300,000	7,800,000 n	200,000,000 n							16 J
Dibenzofuran		240,000	310,000 n	8,200,000 n			ļ	40.1	40 1	17 J	42 J
Fluoranthene		2,900,000	3,100,000 n	82,000,000 n	100 J	11 J	6 J	12 J	12 J	1/ J	16 J
Fluorene		2,400,000	3,100,000 n	82,000,000 n					-		38 J
ndeno(1,2,3-cd)pyrene		1400	880 c	7,800 c	79 J					21 J	42 J
Naphthalene		1300000	3,100,000 n	82,000,000 n							31 J
Phenanthrene		1,700,000	2,300,000 n	61,000,000 n				1=1.	40	24 1	53 J
Pyrene		2,200,000	2,300,000 n	61,000,000 n	140 J	12 J		15 J	12 J	34 J	55 3
Pesticides/PCBs, ug/kg											l
4,4'-DDD		4500	2,700 c	24,000 c							ļ
4,4'-DDE		3000	1,900 c	17,000 c							0.74
4,4'-DDT		3100	1,900 c	17,000 c	0.2 J					0.57	0.74 J 0.23 J
Aldrin		60	38 c	340 c			0.09 J			0.57 J	U.23 J
alpha-Chlordane		800	490 c	4,400 c	0.1 J	1.2 J	0.06 J	0.12 J		18	
Aroclor-1260		900	ND	ND				46		0.04	0.4
beta-BHC		600	350 с	3,200 c				0.1 J		0.21 J	0.4 J
delta-BHC		23000	350 c	3,200 c				0.07 J	0.11 J		
Dieldrin		70	40 c	360 c	0.26 J	0.15 J	2.1 J	0.82 J	1.9 J	3.9 J	0.24 J
Endosulfan sulfate		ND	ND	ND			l	3.8 J	<u> </u>	<u> </u>	<u> </u>

	Deelerround	SCG for	DD035-	DDO 3 6 1 1							
	Background]	RBC ³ for	RBC ³ for Industrial				00000404			
Sample ID	Screening 1	Residential Soil 2	Residential Soil	Soil	30S00101	30S00201	30S00301	30S00401	30S00501	30S00601	30S00701
Sampling Date					10/23/97	10/23/97	10/23/97	10/23/97	10/23/97	10/23/97	10/23/97
Endrin		23000	23,000 n	610,000 n						0.93 J	
Endrin ketone		ND	ND	ND	0.87 J					1.2 J	0.26 J
gamma-BHC (Lindane)		800	490 c	4,400 c	0.4 J	0.08 J					
gamma-Chlordane		800	490 c	4,400 c	0.47 J	0.78 J	0.13 J	0.36 J	0.07 J	10 J	0.21 J
Heptachlor		200	140 c	1,300 c	0.06 J		0.06 J				
Heptachlor epoxide		100	70 c	630 c						1.4 J	
Methoxychlor		380000	390,000 n	10,000,000 n	8.4 J					19 J	
Herbicides, ug/kg											
2,4-DB		610,000	630,000 n	16,000,000 n							
MCPP		77,000	78,000 n	2,000,000 n							
Inorganics, mg/kg											
Aluminum	2088	75000	78,000 n	1,000,000 n	815	126	267	317	106	907	321
Arsenic	1.0	0.8	0.43 /23 c/n	3.8 c/610 c/n						0.91 J	
Barium	8.7	5,200.0	5,500 n	140,000 n	13.3 J	2.2 J	2.8 J	3.9 J	2.4 J	5.9 J	5.1 J
Beryllium	ND	0.2	0.15 c	1 c						0.06 J	
Cadmium	0.98	37	39 n	1,000 n						0.21 J	
Calcium	25295	ND	1000000	1000000	470 J	1080	1950	15500	2630	81200	2470
Chromium	5	290	390 n	10,000 n	1.1 J		0.61 J	1.2 J	0.48 J	4.5	1 J
Copper	4.1	ND	270,000 n	1,000,000 n	1.7 J	1.8 J	3.2 J	2.4 J	1.8 J	2.5 J	1.4 J
Iron	712	ND	23,000 n	610,000 n	314	125	114	241	81	577	202
Lead	14.5	500	400	400	7.7	5	4.4 J	4.4 J	5.7 J	4.1	5.3 J
Magnesium	328	ND	460,468	460,468					33.7 J	809 J	
Manganese	8.1	370	1,800 n	47,000 n	3.5	3.2	4.2	5.4	2.1 J	13	6.1
Mercury	0.07	23	23 n	610 n							0.03 J
Nickel	4.4	1500	1,600 n	41,000 n			0.49 J			0.95 J	0.48 J
Silver	ND	390	390 n	10,000 n							
Zinc	17.2	23000	23,000 n	610,000 n			561		32.7		

Naval Training Center, Orlando Orlando, FL

	Background	SCG for	RBC ³ for	RBC ³ for Indus	trial						
Sample ID	_	Residential Soil 2	Residential Soil	1	Li ICI	30S00801	30S00901 30S00901D		30S01001	30S01101	30S01201
Sampling Date	Screening	INESIGERICAL SOIL	TCSIGCITION CON	1		10/23/97	10/23/97	10/23/97	10/23/97	10/23/97	10/23/97
Volatile Organics, ug/kg						1					
2-Butanone		2,200,000	47,000,000	1.000.000.000	n						
Semivolatile Organics, ug/kg		2,200,000	,000,000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Acenaphthene							8 J				
Acenaphthylene		670,000	2,300,000 n	61,000,000	n	6 J	9 J	6 J	12 J	10 J	7 J
Acertaphthylene		20000000	23,000,000 n	610000000							
Benzo(a)anthracene		1,400	880 c	7,800		8 J	15 J	12 J	22 J	24 J	24 J
Benzo(a)pyrene		100	88 c	780		10 J	22 J	14 J	41 J	38 J	34 J
Benzo(b)fluoranthene		1,400	880 c	7,800		20 J	39 J	28 J	71 J	63 J	55 J
Benzo(g,h,i)perylene		14,000	2300000 n	61,000,000		5 J	12 J	10 J	29 J	27 J	21 J
Benzo(k)fluoranthene	 	14,000	8,800 c	78,000			11 J	8 J	26 J	22 J	19 J
Butylbenzylphthalate		15,000,000	16,000,000 n	410,000,000							51 J
Chrysene		140,000	88,000 c	780,000		16 J	40 J	28 J	52 J	42 J	40 J
Di-n-butylphthalate		7,300,000	7,800,000 n	200,000,000				43 J			
Dibenzofuran		240,000	310,000 n	8,200,000							
Fluoranthene		2,900,000	3,100,000 n	82,000,000		14 J	53 J	35 J	41 J	41 J	44 J
Fluorene		2,400,000	3,100,000 n	82,000,000			8 J				
Indeno(1,2,3-cd)pyrene		1400	880 c	7,800	С		15 J		31 J	33 J	26 J
Naphthalene		1300000	3,100,000 n	82,000,000	n		15 J	8 J			
Phenanthrene		1,700,000	2,300,000 n	61,000,000	n	7 J	32 J	20 J	11 J	9 J	11 J
Pyrene		2,200,000	2.300.000 n	61,000,000	n	21 J	64 J	43 J	54 J	49 J	51 J
Pesticides/PCBs, ug/kg		 									
4.4'-DDD		4500	2,700 c	24,000	С				24 J		
4.4'-DDE		3000	1,900 c	17,000	С	2.3 J	8.2	7.6	36 J		1.4 J
4,4'-DDT		3100	1,900 c	17,000		2.2 J	11 J	13 J	520 DJ	0.66 J	1.7 J
Aldrin		60	38 c	340	С		0.05 J	0.06 J	0.35 J		
alpha-Chlordane		800	490 c	4,400	С	0.14 J	17	16	1.9		0.28 J
Aroclor-1260		900	ND	ND							
beta-BHC		600	350 c	3,200	С	0.09 J	0.22 J	0.24 J	0.12 J		0.32 J
delta-BHC		23000	350 c	3,200				0.12 J			
Dieldrin		70	40 c	360						0.13 J	0.2 J
Endosulfan sulfate	-	ND	ND	ND					3.7 J		1.2 J

	Background	SCG for	RBC ³ for	RBC 3 for Industrial						
Sample ID	Screening 1	Residential Soil 2	Residential Soil	Soil	30S00801	30\$00901	30S00901D	30S01001	30S01101	30S01201
Sampling Date					10/23/97	10/23/97	10/23/97	10/23/97	10/23/97	10/23/97
Endrin		23000	23,000 n	610,000 n						
Endrin ketone		ND	ND	ND	0.19 J	0.58 J	0.24 J	1.2 J	0.54 J	0.69 J
gamma-BHC (Lindane)		800	490 c	4,400 c					0.03 J	0.13 J
gamma-Chlordane		800	490 c	4,400 c	0.16 J	9.5 J	9.7	1.2 J	0.14 J	0.2 J
Heptachlor		200	140 c	1,300 c	0.09 J	0.2 J	0.2 J	0.14 J		
Heptachlor epoxide		100	70 c	630 c		0.64 J	0.59 J			
Methoxychlor		380000	390,000 n	10,000,000 n				6.4 J		
Herbicides, ug/kg										
2,4-DB		610,000	630,000 n	16,000,000 n					3.7 J	7.5 J
MCPP		77,000	78,000 n	2,000,000 n				1300 J		
lnorganics, mg/kg										
Aluminum	2088	75000	78,000 n	1,000,000 n	861	171	224	421	214	1040
Arsenic	1.0	0.8	0.43 /23 c/n	3.8 c/610 c/n						
Barium	8.7	5,200.0	5,500 n	140,000 n	8.2 J	5.9 J	5.4 J	10.1 J	5.5 J	10.9 J
Beryllium	ND	0.2	0.15 c	1 c						
Cadmium	0.98	37	39 n	1,000 n						0.2 J
Calcium	25295	ND	1000000	1000000	830 J	529 J		4830	11900	12100
Chromium	5	290	390 n	10,000 n	1.7 J	0.76 J	0.81 J	1.2 J	1.3 J	2.5
Copper	4.1	ND	270,000 n	1,000,000 n	1.6 J	1.2 J	1.3 J	1.6 J	3.2 J	4.8 J
Iron	712	ND	23,000 n	610,000 n	83.8	190	200	131	136	255
Lead	14.5	500	400	400	6.2 J	24 J	24.8 J	51 J	3.4 J	11.1 J
Magnesium	328	ND	460,468	460,468						
Manganese	8.1	370	1,800 n	47,000 n	2.2 J	7	8.3	4	4.7	7.3
Mercury	0.07	23	23 n	610 n	0.08			0.03 J		0.04 J
Nickel	4.4	1500	1,600 n	41,000 n				0.59 J		0.75 J
Silver	ND	390	390 n	10,000 n	2.6					
Zinc	17.2	23000	23,000 n	610,000 n		25.2	24	14		13.9

Naval Training Center, Orlando Orlando, FL

NOTES:

The background screening value is twice the average of detected concentrations for inorganic analytes.

² SCG = Soil Cleanup Goals for Florida (Florida Department of Environmental Protection memorandum, September 29, 1995). Arsenic value is as revised in Applicability of Soil Cleanup Goals for Florida (FDEP memorandum, January 19, 1996). Values indicated are from a residential scenario.

Chromium values are for Chromium VI.

³ RBC = Risk-Based Concentration Table, USEPA Region III, May 1996, R.L. Smith. RBC for chromium is based on chromium VI. RBC for lead is not available, value is Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites (OSWER directive 9355-4-12). For essential nutrients (calcium, magnesium, potassium, sodium) screening values were derived based on recommended daily allowances (RDAs). RBC for benzo(g,h,i)perylene and phenanthrene are not available, value is based on pyrene.

n = noncarcinogenic pathway

c = carcinogenic pathway

mg/kg = milligrams per kilogram.

ND = Not determined.

ug/kg = micrograms per kilogram.

bls = below land surface

is = below land surface

PCB = polychlorinated biphenyl.

OSWER = Office of Solid Waste and Emergency Response.

USEPA = U.S. Environmental Protection Agency.

DDD = Dichlorodiphenyldichloroethane

DDE = Dichlorodiphenyldichloroethene

DDT = Dichlorodiphenyltrichloroethane

D = Indicates value was determined during a diluted reanalysis.

J = Reported concentration is an estimated quantity.

All inorganics results expressed in milligrams per kilogram (mg/kg) soil dry weight; organics in micrograms per kilogram (ug/kg) soil dry weight.

Bold/shaded values indicate exceedance of regulatory guidance and background.

TABLE D-2 SUMMARY OF POSITIVE DETECTIONS IN SUBSURFACE SOIL

	Background	SCG for	RBC ³ for	RBC ³ for					
Sample ID	Screening 1	Residential Soil 2	Residential Soil	Industrial Soil	30B00101	30B00101D	30B00201	30B00301	30B003011
Sampling Date					10/23/97	10/23/97	10/30/97	10/31/97	10/31/97
Semivolatile Organics, ug/kg									
Acenaphthylene		NA	2,300,000 n	61,000,000 n					
Benzo(a)anthracene		NA	880 c	7,800 c		12 J			
Benzo(a)pyrene		NA	88 c	780 c		20 J			
Benzo(b)fluoranthene		NA	880 c	7,800 c		19 J			
Benzo(g,h,i)perylene		NA	2300000 n	61,000,000 n					
Benzo(k)fluoranthene		NA	8,800 c	78,000 c		27 J			
bis(2-Ethylhexyl)phthalate		NA	46,000	410,000		210 J			
Chrysene		NA	88,000 c	780,000 c		33 J			
Di-n-butylphthalate		NA	7,800,000 n	200,000,000 n					
Fluoranthene		NA	3,100,000 n	82,000,000 n		41 J	8 J		
Indeno(1,2,3-cd)pyrene		NA	880 c	7,800 c					
Phenanthrene		NA	2,300,000 n	61,000,000 n		20 J			
Pyrene		NA	2,300,000 n	61,000,000 n		57 J			
Pesticides/PCBs, ug/kg									
4,4'-DDD		NA	2,700 c	24,000 c					
4,4'-DDE		NA	1,900 c	17,000 c					
4,4'-DDT		NA	1,900 c	17,000 c	0.34 J	0.15 J			0.54 J
Aldrin		NA	38 c	340 c				0.09 J	0.05 J
alpha-Chlordane		NA	490 c	4,400 c					0.07 J
beta-BHC		NA	350 c	3,200 c		0.18 J			
delta-BHC		NA	350 c	3,200 c				0.1 J	
Dieldrin		NA	40 c	360 c				2.3 J	2.7 J
Endosulfan sulfate		NA	ND	ND					
Endrin ketone		NA	ND	ND			0.18 J	0.95 J	
gamma-BHC (Lindane)		NA	490 c	4,400 c					
gamma-Chlordane		NA	490 c	4,400 c					0.11 J
Heptachlor		NA	140 c	1,300 c		0.11 J			0.07 J
Heptachlor epoxide		NA	70 c	630 c					
Methoxychlor		NA	390,000 n	10,000,000 n					0.48 J
Herbicides, ug/kg									
2,4,5-T		NA	780,000 n	20,000,000 n	1				
Inorganics, mg/kg				, ,	1				

		Background	SCG for	RBC 3 for	or	RBC ³ for				T			
	Sample ID	Screening 1	Residential Soil 2	Residential	Soil	Industrial Soil		30B00101	30B00101D	30B0020	1 30B00301	30B00301D 10/31/97	
Sa	mpling Date							10/23/97	10/23/97	10/30/97	10/31/97		
Aluminum		2,119	NA	78,000	n	1,000,000 n		105	112	415 J	224 J	247 J	
Arsenic		1.1	NA	0.43 /23	c/n	3.8 c/610 c	/n			1.5 J		2.3 J	
Barium		3.6	NA	5,500	n	140,000 n							
Calcium		115	NA	1000000		1000000		654 J	1120 J	83.3 J	2940 J	1140 J	
Chromium		4	NA	390	n	10,000 n		0.56 J	0.69 J	2.5	1.8 J	2.3 J	
Cobalt		2	NA	4,700	n	120,000 n				0.89 J	0.3 J	1 J	
Copper		ND	NA	270,000	n	1,000,000 n		0.65 J		0.63 J			
iron		264	NA	23,000	n	610,000 n	1	17.6 J	12.2 J	16.9 J	25.1 J	22.4 J	
Lead		3.9	NA	400		400		0.59 J	1 J	0.74 J	0.58 J	0.53 J	
Magnesium		32.8	NA	460,468		460,468		20.7 J			25 J	19.4 J	
Manganese		2.1	NA	1,800	n	47,000 n	ı			0.44 J			
Mercury		ND	NA	23	n	610 n							
Selenium		1.3	NA	390	n	10,000 n		· ·		0.79 J		1.3 J	
Silver		ND	NA	390	n	10,000 n				1.1 J		1.5 J	
Thallium		ND	NA	ND		ND							
Vanadium		3.4	NA	550	n	14,000 n				0.5 J			
Zinc		5.6	NA	23,000	n	610,000 n		0.9 J					
General Chemistry, m	g/kg												
TRPH		ND	ND	ND		ND				13	28		

	Background SCG for		RBC ³ for		RBC ³ for						
Sample ID	Screening 1	Residential Soil 2	Residential	Soil	Industrial Se	lic	30B00401	30B00501	30B0060)1	30B00701
Sampling Date							10/30/97	10/24/97	10/24/97	7	10/24/97
Semivolatile Organics, ug/kg											
Acenaphthylene		NA	2,300,000	n	61,000,000	n			7 3		
Benzo(a)anthracene		NA	880	G	7,800	С			20 J		
Benzo(a)pyrene		NA	88	C	780	С			22 .		
Benzo(b)fluoranthene		NA	880	С	7,800	С			40 J		
Benzo(g,h,i)perylene		NA	2300000	n	61,000,000	n			13 J		
Benzo(k)fluoranthene		NA	8,800	С	78,000	С			15 .		
bis(2-Ethylhexyl)phthalate		NA	46,000		410,000				150	J	
Chrysene		NA	88,000		780,000				32 .		
Di-n-butylphthalate		NA	7,800,000	n	200,000,000	n			1 -12	J	
Fluoranthene		NA	3,100,000	n	82,000,000	n			36 .		
Indeno(1,2,3-cd)pyrene		NA	880		7,800				16		
Phenanthrene		NA	2,300,000	n	61,000,000				12 .		
Pyrene		NA	2,300,000	n	61,000,000	n			43 .	J	
Pesticides/PCBs, ug/kg						Ĺ.,					
4.4'-DDD		NA	2,700		24,000				6.3		
4.4'-DDE		NA	1,900		17,000				200 [
4,4'-DDT		NA	1,900		17,000				270 [DJ	
Aldrin		NA	38		340						
alpha-Chlordane		NA	490		4,400				27 [
beta-BHC		NA	350		3,200				0.12		
delta-BHC		NA	350		3,200				0.05	J	
Dieldrin		NA	40	С	360	С					
Endosulfan sulfate		NA	ND		ND				7.8		
Endrin ketone		NA	ND		ND			0.49 J	1.4		0.36 J
gamma-BHC (Lindane)		NA	490		4,400				0.16		
gamma-Chlordane		NA	490		4,400				29 [
Heptachlor		NA	140		1,300		0.09 J		0.44		
Heptachlor epoxide		NA	70		630				1.2	J	
Methoxychlor		NA	390,000	n	10,000,000	n					
Herbicides, ug/kg											· · · · · · · ·
2,4,5-T		NA	780,000	n	20,000,000	n		0.4 J			
Inorganics, mg/kg											

Appendix D Table D-2. Summary of Positive Detections in Subsurface Soil Analytical Results Study Area 30

	Background	SCG for	RBC ³ for		RBC 3 for							
Sample ID	Screening 1	Residential Soil	² Residential S	Soil	Industrial Se	oil	30B00401	30B005	01	30B00601	30B0070)1
Sampling Date							10/30/97	10/24/9	97	10/24/97	10/24/97	7
Aluminum	2,119	NA	78,000 r	n	1,000,000	n	205 J			975		
Arsenic	1.1	NA	0.43 /23 (c/n	3.8 c/610	c/n	1.5 J					
Barium	3.6	NA	5,500 r	n	140,000	n		0.91	J	10.5 J		
Calcium	115	NA	1000000		1000000		103 J	578	J	7770	1550	
Chromium	4	NA	390 r	n	10,000	n	2.2 J			4	1.3	J
Cobalt	2	NA	4,700 r	n	120,000	n	0.73 J					
Copper	ND	NA	270,000 r	n	1,000,000	n .	0.74 J			1.4 J		
Iron	264	NA	23,000 r	n	610,000	n	17.6 J			1390	13 .	J
Lead	3.9	NA	400		400		1.1 J	0.59	J	52.2 J	4.6	J
Magnesium	32.8	NA	460,468		460,468		11.1 J					
Manganese	2.1	NA	1,800 r	n	47,000	n				55.1		
Mercury	ND	NA	23 r	n	610	n	0.03 J			0.04 J		
Selenium	1.3	NA	390 r	n	10,000	n						
Silver	ND	NA	390 r	n	10,000	n	0.97 J					
Thallium	ND	NA	ND		ND		1.3 J					
Vanadium	3.4	NA	550 r	n	14,000	n						
Zinc	5.6	NA	23,000 r	n	610,000	n		0.2	J	71.3		
General Chemistry, mg/kg												
TRPH	ND	ND	ND		ND		13			45		

Appendix D Table D-2. Summary of Positive Detections in Subsurface Soil Analytical Results Study Area 30

Naval Training Center, Orlando Orlando, FL

NOTES:

¹ The background screening value is twice the average of detected concentrations for inorganic analytes.

² SCG = Soil Cleanup Goals for Florida (Florida Department of Environmental Protection memorandum, September 29, 1995). For detected analytes and compounds in subsurface soils, SCGs are not applicable (NAs) because there are no associated exceedances of Florida groundwater guidance concentrations in site groundwater.

³ RBC = Risk-Based Concentration Table, USEPA Region III, March 1997, R.L. Smith. RBC for chromium is based on chromium VI. RBC for lead is not available, value is Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites (OSWER directive 9355-4-12). For essential nutrients (calcium, potassium, sodium, magnesium) screening values were derived based on recommended daily allowances (RDAs).

n = noncarcinogenic pathway

c = carcinogenic pathway

NA = Not applicable (for SCGs) or not analyzed.

ND = Not determined.

mg/kg = milligrams per kilogram.

ug/kg = micrograms per kilogram.

OSWER = Office of Solid Waste and Emergency Response.

USEPA = U.S. Environmental Protection Agency.

J = Reported concentration is an estimated quantity.

All inorganics results expressed in milligrams per kilogram (mg/kg) soil dry weight; organics in micrograms per kilogram (ug/kg) soil dry weight.

TABLE D-3

SUMMARY OF POSITIVE DETECTIONS IN GROUNDWATER

Well ID						OLD	-30-01		OLD-	30-02	
	Background 1		Primary	RBC ² for Ta	р		1				
Sample ID	Screening	FDEPG	FEDMCL	Water	30G00	101	30H00101	30G00201	30G00202	30H00201	30H00202
Sampling Date					11/12	97	11/12/97	11/12/97	2/11/98	11/12/97	2/11/98
Volatile Organics, ug/L						T					
Methylene chloride		5 p	5	4.1	С		NA		NA	NA	NA
Semivolatile Organics, ug/L											
Diethylphthalate		5600 st	t ND	29,000	n 1	J	NA		NA	NA	NA
Pesticides/PCBs, ug/L											
4,4'-DDE		0.1 c	ND	0.2	С		NA	0.0016 J	NA	NA	NA
alpha-Chlordane		2 p		ND	0.0024	J	NA		NA	NA	NA
Dieldrin		0.1 c	ND	0.0042	С		NA		NA	NA	NA
Endrin ketone		ND	ND	ND			NA	0.0029 J	NA	NA	NA
gamma-BHC (Lindane)		ND	ND	0.052	c 0.0043	J	NA		NA	NA	NA
gamma-Chiordane		2 p	2	ND			NA		NA	NA	NA
Inorganics, ug/L											
Aluminum	4,067	200 s		37,000	n 41 30		516	451	125 B	276	59.5 B
Antimony	4.1	6 p	6	15	n					3.7 J	
Arsenic	5	50 p		0.045/11	c/n						4.3 B
Barium	31.4	2,000 p	2,000	2,600		J			17.1 B		17.7 B
Beryllium	ND	4 p		0.016							0.1 B
Calcium	36,830	ND	ND	1,000,000	2380	J	1930 J	41300	89400	40300	87300
Chromium	7.8	100	100	ND					0.9 B	392 J	
Cobalt	ND	ND	ND	2,200						7.1 J	1.8 B
Copper	5.4	1,000 s	1,300	1,500	n 8.3	J			2.4 B	7.2 J	11 B
1ron	1,227	300 s	ND	11,000	n 958		742 J		43 B	1740 J	29.4 B
Lead	4	15 p	15	15	6.3						
Magnesium	4,560	ND	ND	118,807	1430	j	1320 J	1660 J	4890 B	1630 J	4810 B
Manganese	17	50 s	ND	840		П			3.3 B	86.8 J	5.2 B
Mercury	0.12	2	2	11		:				0.15 J	
Nickel	ND	100	100	730	n					435 J	9.4 B
Potassium	5,400	ND	ND	297,016				3270 J	7600	3310 J	7770
Selenium		50 s		180	2.7			2.6 J			5.3
Sodium	18,222	160,000 p	ND	396,022	3580	J	3730 J	7460	8470	8950	8560
Vanadium	20.6	49 st	l ND	260					1.8 B		1.6 B
Zinc	4	5000 s	ND	11,000	n				2 B		20.9
General Chemistry, mg/L											
Suspended Solids	ND	ND	ND	ND	150				NA		NA

Well ID							OLD	-30-03		
	Background 1	1	Primary	RBC ² for Tap						
Sample ID	1 -	FDEPG	FEDMCL	Water	30G00301	30G00302	30H00301	30H00302	30G00301D	30H00301D
Sampling Date					11/12/97	2/11/98	11/12/97	2/11/98	11/12/97	11/12/97
Volatile Organics, ug/L										
Methylene chloride		5 p	5	4.1 c		NA	NA	NA	8 J	NA
Semivolatile Organics, ug/L										
Diethylphthalate		5600 st	ND	29,000 n		NA	NA	NA		NA
Pesticides/PCBs, ug/L										
4,4'-DDE		0.1 c	ND	0.2 c		NA	NA	NA		NA
alpha-Chiordane		2 p	2	ND		NA	NA	NA		NA
Dieldrin		0.1 c	ND	0.0042 c	0.011 J	NA	NA	NA	0.01 J	NA
Endrin ketone		ND	ND	ND	0.0028 J	NA	NA	NA		NA
gamma-BHC (Lindane)		ND	ND	0.052 c		NA	NA	NA		NA
gamma-Chlordane		2 p	2	ND		NA	NA	NA		NA
Inorganics, ug/L										
Aluminum	4,067	200 s	ND	37,000 n	1120	370	739	64.2 B	1130	714
Antimony	4.1	6 p	6	15 n	3.8 J		3.5 J			
Arsenic	5	50 p	50	0.045/11 c/n				5.2 B		
Barium	31.4	2,000 p	2,000	2,600 n		3.1 B		2.8 B		
Beryllium	ND	4 p	4	0.016 c		0.11 B				
Calcium	36,830	ND	ND	1,000,000	62900	61800	60600	62100	63100	59600
Chromium	7.8	100	100	ND	113 J		51.7 J			
Cobalt	ND	ND	ND	2,200 n	3.5 J	2.2 B	2 J	1.4 B		1.1 J
Copper	5.4	1,000 s	1,300	1,500 n	5.2 J	2.5 B	3.8 J	4.2 B	2.5 J	2.8 J
Iron	1,227	300 s	ND	11,000 n	597 J	180	361 J	124		337 J
Lead	4	15 p	15	15						
Magnesium	4,560	ND	ND	118,807	2140 J	2250 B	2170 J	2290 B	2140 J	2140 J
Manganese	17	50 s	ND	840 n	34.1 J	2.7 B	19.4 J	3.3 B		
Mercury	0.12	2	2	11 n						
Nickel	ND	100	100	730 n	151 J		85.6 J	3.8 B		
Potassium	5,400	ND	ND	297,016	12400	5250	11600	5340	12800	11300
Selenium		50 s	ND	180		4.1 B				
Sodium	18,222	160,000 p	ND	396,022	11100	8360	11700	8430	11000	11600
Vanadium	20.6	49 st	ND	260 n	7.9 J					
Zinc	4	5000 s	ND	11,000 n		6.2 B		9.8 B		
General Chemistry, mg/L										
Suspended Solids	ND	ND	ND	ND	7	NA		NA	6	

Well ID					OLD	-30-04	OLD-	30-05	OLD-	-30-06
Sample ID	Background ¹ Screening	FDEPG	Primary FEDMCL	RBC ² for Tap Water	30G00401	30H00401	30G00501	30H00501	30G00601	30H00601
Sampling Date	00.00g				11/11/97	11/11/97	11/13/97	11/13/97	11/13/97	11/13/97
Volatile Organics, ug/L										
Methylene chloride		5 p	5	4.1 c		NA		NA		NA
Semivolatile Organics, ug/L										
Diethylphthalate		5600 st	ND	29,000 n		NA		NA		NA
Pesticides/PCBs, ug/L										
4,4'-DDE		0.1 c	ND	0.2 c	0.0016 J	NA		NA		NA
alpha-Chlordane		2 p	2	ND	0.0022 J	NA	0.0015 J	NA		NA
Dieldrin		0.1 c	ND	0.0042 c		NA		NA		NA
Endrin ketone		ND	ND	ND		NA	0.0043 J	NA		NA
gamma-BHC (Lindane)		ND	ND	0.052 c		NA		NA	0.0065 J	NA
gamma-Chlordane		2 p	2	ND	0.0055 J	NA		NA	0.0029 J	NA
Inorganics, ug/L										
Aluminum	4,067	200 s	ND	37,000 n	443	117 J	350	71.8 J	1930	376
Antimony	4.1	6 p	6	15 n		3.8 J				
Arsenic	5	50 p	50	0.045/11 c/n						
Barium	31.4	2,000 p	2,000	2,600 n					34.6 J	
Beryllium	ND	4 p	4	0.016 c						
Calcium	36,830	ND	ND	1,000,000	57900	56300	38000	38700	20800	18600
Chromium	7.8	100	100	ND						
Cobalt	ND	ND	ND	2,200 n					1.9 J	
Copper	5.4	1,000 s	1,300	1,500 n	2.7 J		3.6 J	2.6 J	6.9 J	2.2 J
Iron	1,227	300 s	ND	11,000 n					133	
Lead	4	15 p	15	15			1.6 J		7.7	1.5 J
Magnesium	4,560	ND	ND	118,807	2640 J	2620 J	1720 J	1750 J	2620 J	2370 J
Manganese	17	50 s	ND	840 n						
Mercury	0.12	2	2	11 n						
Nickel	ND	100	100	730 n					48.6	
Potassium	5,400	ND	ND	297,016	7730	7480	970 J	916 J	3620 J	3390 J
Selenium		50 s	ND	180	4.4 J	3.1 J				
Sodium	18,222	160,000 p	ND	396,022	8150	8180	11500	12400	9560	9380
Vanadium	20.6	49 st	ND	260 n						
Zinc	4	5000 s	ND	11,000 n			55.8		30.3	
General Chemistry, mg/L										
Suspended Solids	ND	ND	ND	ND					5	

Well ID							OLD	-30-07	OLD-	30-08
	Background 1			Primary	RBC ² for T	ар				
Sample ID	Screening	FDEP	3	FEDMCL	Water		30G00701	30H00701	30G00801	30H00801
Sampling Date							11/11/97	11/11/97	11/13/97	11/13/97
Volatile Organics, ug/L										
Methylene chloride		5	р	5	4.1	С	20	NA		NA
Semivolatile Organics, ug/L										
Diethylphthalate		5600	st	ND	29,000	п		NA		NA
Pesticides/PCBs, ug/L										1
4,4'-DDE		0.1	С	ND	0.2	С		NA		NA
alpha-Chlordane		2	р	2	ND			NA		NA
Dieldrin		0.1	С	ND	0.0042	С		NA		NA
Endrin ketone		ND		ND	ND			NA	0.0038 J	NA
gamma-BHC (Lindane)		ND		ND	0.052			NA	0.0049 J	NA
gamma-Chlordane		2	р	2	ND			NA		NA
Inorganics, ug/L										·
Aluminum	4,067	200		ND	37,000		264	128 J	401	291
Antimony	4.1		р	6	15					
Arsenic	5	50	р	50	0.045/11		5 J	3.8 J		
Barium	31.4	2,000	р	2,000	2,600					
Beryllium	ND	4	р	4	0.016				l	
Calcium	36,830	ND		ND	1,000,000		37100	36300	25800	24500
Chromium	7.8	100		100	ND					
Cobalt	ND	ND		ND	2,200					
Copper	5.4	1,000		1,300	1,500				3.9 J	2.7 J
Iron	1,227	300	s	ND	11,000	n			299	
Lead	4	15	р	15	15					
Magnesium	4,560	ND		ND	118,807		2330 J	2270 J	1830 J	1770 J
Manganese	17	50	s	ND	840	n				
Mercury	0.12	2		2	11	n				
Nickel	ND	100		100	730	n				
Potassium	5,400	ND		ND	297,016		1370 J	1330 J	22300	23000
Selenium		50	s	ND	180					
Sodium	18,222	160,000	р	ND	396,022		13200	13000	14900	14900
Vanadium	20.6	49	st	ND	260	n				
Zinc	4	5000	s	ND	11,000	n				
General Chemistry, mg/L										
Suspended Solids	ND	ND		ND	ND	\Box				

Naval Training Center, Orlando

NOTES:

Orlando, FL

A full independent data validation is pending for groundwater analytical results.

1 Groundwater background screening value is twice the average of detected concentrations for inorganic analytes.

RBC = Risk-Based Concentration Table, USEPA Region III, May 1996, R.L. Smith. RBC for chromium is based on chromium VI. RBC for lead is not available, value is treatment technology action limit for lead in drinking water distribution system identified in Drinking Water Standards and Health Advisories (USEPA, 1995). For essential nutrients (calcium, magnesium, potassium, and sodium) screening values were derived based on recommended daily allowances (RDAs).

Value for copper is a treatment level.

- p = Primary Standard
- s = Secondary Standard.
- st = Systemic Toxicant
- n = noncarcinogenic effects.
- c = carcinogenic effects.
- NA = Not analyzed.
- ND = Not determined.
- USEPA = U.S. Environmental Protection Agency.

FDEPG = Florida Department of Environmental Protection, Groundwater Guidance Concentrations, June 1994.

FEDMCL= Federal Maximum Contaminant Levels, Primary Drinking Water Regulations and Health Advisories, February 1996.

B = Reported concentration is between the instrument detection limit (IDL) and the contract required detection limit (CRDL).

The "B" qualifier typically changes to "J" (estimated concentration) upon data validation.

Groundwater resampled on 2/11/98 has not been subjected to full independent data validation.

- H = Filtered sample (0.45 micron in-line filter).
- J = Reported concentration is an estimated quantity.
- ug/l = micrograms per liter.
- mg/l = miligrams per liter.

Bold/shaded numbers indicate exceedance of groundwater guidance and background.

Blank space indicates analyte/compound was not detected at the reporting limit.

APPENDIX E

SUMMARY OF ANALYTICAL RESULTS

Table E-1

Summary of Soil Analytical Results Summary of Groundwater Analytical Results Table E-2

TABLE E-1

SUMMARY OF SOIL ANALYTICAL RESULTS

Sample ID	30S00101	30S00201	30S00301	30S00401	30S00501	30S00601	30S00701	30S00801	30S00901	30S00901D
Lab ID	S776068*1	S776068*2	S776068*3	S776068*4	S776068*5	S776068*7	S776068*8	S776068*9	S776068*10	S776068*11
Sampling Date	23-Oct-97	23-Oct-97								
Volatile organics, ug/kg	20 00.07	25 55. 57								
1,1,1-Trichloroethane	10 U	10 U								
1,1,2,2-Tetrachloroethane	10 U	10 U								
1,1,2-Trichloroethane	10 U	10 U								
1.1-Dichloroethane	10 U	10 U								
1.1-Dichloroethene	10 U	10 U								
1.2-Dichloroethane	10 U	10 U								
1,2-Dichloroethene (total)	10 U	10 U								
1,2-Dichloropropane	10 U	10 U								
2-Butanone	10 U	22	10 U	10 U	10 U					
2-Hexanone	10 U	10 U								
4-Methyl-2-pentanone	10 U	10 U								
Acetone	10 U	10 UJ	10 UJ							
Benzene	10 U	10 U								
Bromodichloromethane	10 U	10 U								
Bromoform	10 U	10 U								
Bromomethane	10 U	10 U								
Carbon disulfide	10 U	10 U								
Carbon tetrachloride	10 U	10 U								
Chlorobenzene	10 U	10 U								
Chloroethane	10 U	10 U								
Chloroform	10 U	10 U								
Chloromethane	10 U	10 U								
cis-1,3-Dichloropropene	10 U	10 U								
Dibromochloromethane	10 U	10 U								
Ethylbenzene	10 U	10 U								
Methylene chloride	10 U	10 U								
Styrene	10 U	10 U								
Tetrachloroethene	10 U	10 U								
Toluene	10 U	10 U								
trans-1,3-Dichloropropene	10 U	10 U								
Trichloroethene	10 U	10 U								
Vinyl chloride	10 U	10 U								
Xylene (total)	10 U	10 U								
Semivolatile organics, ug/kg							0.40		0.40	
1,2,4-Trichlorobenzene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U

Naval Training Center, Orlando Orlando, FL

Sample ID	30S00101	30S00201	30S00301	30S00401	30S00501	30S00601	30S00701	30500801	30S00901	30S00901D
Lab ID	S776068*1	S776068*2	S776068*3	S776068*4	S776068*5	S776068*7	S776068*8	S776068*9	S776068*10	S776068*11
Sampling Date	23-Oct-97	23-Oct-97								
1,2-Dichlorobenzene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
1,3-Dichlorobenzene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
1,4-Dichlorobenzene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2,2'-oxybis(1-Chloropropane)	330 UJ	340 UJ	350 UJ	340 UJ	330 UJ	340 UJ	340 UJ	340 UJ	340 UJ	340 UJ
2,4,5-Trichlorophenol	840 Ü	850 U	870 U	850 U	840 U	860 U	850 U	850 U	850 U	850 U
2,4,6-Trichlorophenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2,4-Dichlorophenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2,4-Dimethylphenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2,4-Dinitrophenol	840 UJ	850 UJ	870 UJ	850 UJ	840 UJ	860 UJ	850 UJ	850 UJ	850 UJ	850 UJ
2,4-Dinitrotoluene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2,6-Dinitrotoluene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2-Chloronaphthalene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2-Chlorophenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2-Methylnaphthalene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2-Methylphenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
2-Nitroaniline	840 U	850 U	870 U	850 U	840 U	860 U	850 U	850 U	850 U	850 U
2-Nitrophenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
3,3'-Dichlorobenzidine	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
3-Methylphenol/4-Methylphenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
3-Nitroaniline	840 U	850 U	870 U	850 U	840 U	860 U	850 U	850 U	850 U	850 U
4,6-Dinitro-2-methylphenol	840 UJ	850 UJ	870 UJ	850 UJ	840 UJ	860 UJ	850 UJ	850 UJ	850 UJ	850 UJ
4-Bromophenyl-phenylether	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
4-Chloro-3-methylphenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
4-Chloroaniline	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
4-Chlorophenyl-phenylether	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
4-Nitroaniline	840 U	850 U	870 U	850 U	840 U	860 U	850 U	850 U	850 U	850 UJ
4-Nitrophenol	840 UJ	850 UJ	870 UJ	850 UJ	840 UJ	860 UJ	850 UJ	850 UJ	850 UJ	850 UJ
Acenaphthene	330 U	340 U	350 U	340 U	330 U	340 U	14 J	340 U	8 J	340 UJ
Acenaphthylene	330 U	340 U	350 U	340 U	330 U	12 J	16 J	6 J	9 J	6 J
Anthracene	15 J	340 U	350 U	340 U	330 U	340 U	12 J	340 U	340 U	340 U
Benzo(a)anthracene	130 J	340 U	350 U	8 J	330 U	15 J	32 J	8 J	15 J	12 J
Benzo(a)pyrene	140 J	340 U	11 J	10 J	7 J	38 J	44 J	10 J	22 J	14 J
Benzo(b)fluoranthene	270 J	12 J	13 J	16 J	13 J	55 J	84 J	20 J	39 J	28 J
Benzo(g,h,i)perylene	56 J	340 UJ	350 UJ	5 J	330 UJ	13 J	28 J	5 J	12 J	10 J
Benzo(k)fluoranthene	110 J	340 U	350 U	7 J	330 U	340 U	35 J	340 U	11 J	8 J
bis(2-Chloroethoxy)methane	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U

Page 2 ′ 30.XLS 4/15/98

Sample ID	30S00101	30S00201	30S00301	30S00401	30S00501	30S00601	30S00701	30S00801	30S00901	30S00901D
Lab ID	S776068*1	S776068*2	S776068*3	S776068*4	S776068*5	S776068*7	S776068*8	S776068*9	S776068*10	S776068*11
Sampling Date	23-Oct-97	23-Oct-97								
bis(2-Chloroethyl)ether	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
bis(2-Ethylhexyl)phthalate	330 UJ	340 UJ	350 UJ	340 UJ	330 UJ	340 UJ	340 UJ	340 UJ	340 UJ	340 UJ
Butylbenzylphthalate	330 U	58 J	73 J	340 U	69 J	340 U	54 J	340 U	340 U	340 UJ
Carbazole	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Chrysene	100 J	7 J	350 U	10 J	8 J	16 J	39 J	16 J	40 J	28 J
Di-n-butylphthalate	330 UJ	340 UJ	350 UJ	340 UJ	330 UJ	340 UJ	340 UJ	340 UJ	340 UJ	43 J
Di-n-octylphthalate	330 UJ	340 UJ	350 UJ	340 UJ	330 UJ	340 UJ	340 UJ	340 UJ	340 UJ	340 UJ
Dibenz(a,h)anthracene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Dibenzofuran	330 U	340 U	350 U	340 U	330 U	340 U	16 J	340 U	340 U	340 U
Diethylphthalate	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Dimethylphthalate	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Fluoranthene	100 J	11 J	6 J	12 J	12 J	17 J	42 J	14 J	53 J	35 J
Fluorene	330 U	340 U	350 U	340 U	330 U	340 U	16 J	340 U	8 J	340 UJ
Hexachlorobenzene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Hexachlorobutadiene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Hexachlorocyclopentadiene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Hexachloroethane	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Indeno(1,2,3-cd)pyrene	79 J	340 U	350 U	340 U	330 U	21 J	38 J	340 U	15 J	340 U
Isophorone	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
N-Nitroso-di-n-propylamine	330 UJ	340 UJ	350 UJ	340 UJ	330 UJ	340 UJ	340 UJ	340 UJ	340 UJ	340 U
N-Nitrosodiphenylamine	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Naphthalene	330 U	340 U	350 U	340 U	330 U	340 U	42 J	340 U	15 J	8 J
Nitrobenzene	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Pentachlorophenol	840 UJ	850 UJ	870 UJ	850 UJ	840 UJ	860 UJ	850 UJ	850 UJ	850 UJ	850 UJ
Phenanthrene	330 U	340 U	350 U	340 U	330 U	340 U	31 J	7 J	32 J	20 J
Phenol	330 U	340 U	350 U	340 U	330 U	340 U	340 U	340 U	340 U	340 U
Pyrene	140 J	12 J	350 U	15 J	12 J	34 J	53 J	21 J	64 J	43 J
Pesticides/PCBs, ug/kg										
4,4'-DDD	3.3 U	3.4 U	3.5 U	3.4 U	3.3 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U
4,4'-DDE	3.3 U	3.4 U	3.5 U	3.4 U	3.3 U	3.4 U	3.4 U	2.3 J	8.2	7.6
4,4'-DDT	0.2 J	3.4 U	3.5 U	3.4 U	3.3 U	3.4 U	0.74 J	2.2 J	11 J	13 J
Aldrin	1.7 U	1.7 U	0.09 J	1.7 U	1.7 U	0.57 J	0.23 J	1.7 U	0.05 J	0.06 J
alpha-BHC	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.7 U	1.7 U
alpha-Chlordane	0.1 J	1.2 J	0.06 J	0.12 J	1.7 U	18	1.7 U	0.14 J	17	16
Aroclor-1016	33 U	34 U	35 U	34 U	33 U	34 U	34 U	34 U	34 U	34 U
Aroclor-1221	68 U	68 U	70 U	68 U	68 U	69 U	68 U	68 U	68 U	68 U

Sample ID	30S00101	30S00201	30S00301	30S00401	30S00501	30S00601	30S00701	30S00801	30S00901	30S00901D
Lab ID	S776068*1	S776068*2	S776068*3	S776068*4	S776068*5	S776068*7	S776068*8	S776068*9	S776068*10	S776068*11
Sampling Date	23-Oct-97	23-Oct-97								
Aroclor-1232	33 U	34 U	35 U	34 U	33 U	34 U	34 U	34 U	34 U	34 U
Aroclor-1242	33 U	34 U	35 U	34 U	33 U	34 U	34 U	34 U	34 U	34 U
Aroclor-1248	33 U	34 U	35 U	34 U	33 U	34 U	34 U	34 U	34 U	34 U
Aroclor-1254	33 U	34 U	35 U	34 U	33 U	34 U	34 U	34 U	34 U	34 U
Aroclor-1260	33 U	34 U	35 U	46	33 U	34 U	34 U	34 U	34 U	34 U
beta-BHC	1.7 U	1.7 U	1.8 U	0.1 J	1.7 U	0.21 J	0.4 J	0.09 J	0.22 J	0.24 J
delta-BHC	1.7 U	1.7 U	1.8 U	0.07 J	0.11 J	1.8 U	1.7 U	1.7 U	1.7 U	0.12 J
Dieldrin	0.26 J	0.15 J	2.1 J	0.82 J	1.9 J	3.9 J	0.24 J	3.4 U	3.4 U	3.4 U
Endosulfan i	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.7 U	1.7 U
Endosulfan II	3.3 U	3.4 U	3.5 U	3.4 U	3.3 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U
Endosulfan sulfate	3.3 U	3.4 U	3.5 U	3.8 J	3.3 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U
Endrin	3.3 U	3.4 U	3.5 U	3.4 U	3.3 U	0.93 J	3.4 U	3.4 U	3.4 U	3.4 U
Endrin aldehyde	3.3 U	3.4 U	3.5 U	3.4 U	3.3 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U
Endrin ketone	0.87 J	3.4 U	3.5 U	3.4 U	3.3 U	1.2 J	0.26 J	0.19 J	0.58 J	0.24 J
gamma-BHC (Lindane)	0.4 J	0.08 J	1.8 U	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.7 U	1.7 U
gamma-Chlordane	0.47 J	0.78 J	0.13 J	0.36 J	0.07 J	10 J	0.21 J	0.16 J	9.5 J	9.7
Heptachlor	0.06 J	1.7 U	0.06 J	1.7 U	1.7 U	1.8 U	1.7 U	0.09 J	0.2 J	0.2 J
Heptachlor epoxide	1.7 U	1.7 U	1.8 U	1.7 U	1.7 U	1.4 J	1.7 U	1.7 U	0.64 J	0.59 J
Methoxychlor	8.4 J	17 U	18 U	17 U	17 U	19 J	17 U	17 U	17 U	17 U
Toxaphene	170 U	170 U	180 U	170 U	170 U	180 U	170 U	170 U	170 U	170 U
Herbicides, ug/kg										
2,4,5-T	NA	NA	NA	NA	NA	8.6 U	8.5 UJ	8.5 UJ	8.5 U	8.5 U
2,4,5-TP Silvex	NA	NA	NA	NA	NA	8.6 U	8.5 UJ	8.5 UJ	8.5 U	8.5 U
2,4-D	NA	NA	NA	NA	NA	8.6 U	8.5 UJ	8.5 UJ	8.5 U	8.5 U
2,4-DB	NA	NA	NA	NA	NA	8.6 U	8.5 U	8.5 U	8.5 U	8.5 U
Dalapon	NA	NA	NA	NA	NA	2100 U	2000 UJ	2000 UJ	2000 U	2000 U
Dicamba	NA	NA	NA	NA	NA	21 U	20 UJ	20 UJ	20 UJ	20 UJ
Dichloroprop	NA	NA	NA	NA	NA	100 U	100 U	100 U	100 U	100 U
Dinoseb	NA	NA	NA	NA	NA	100 U	100 UJ	100 UJ	100 UJ	100 UJ
MCPA	NA	NA	NA	NA	NA	2100 U	2000 U	2000 U	2000 U	2000 U
MCPP	NA	NA	NA	NA	NA	2100 U	2000 U	2000 U	2000 U	2000 U
Inorganics, mg/kg										
Aluminum	815	126	267	317	106	907	321	861	171	224
Antimony	0.67 U	0.67 U	0.69 U	0.67 U	0.67 U	0.68 U	0.67 U	0.67 U	0.67 U	0.67 U
Arsenic	0.73 U	0.73 U	0.76 U	0.73 U	0.73 U	0.91 J	0.73 U	0.73 U	0.73 U	0.73 U
Barium	13.3 J	2.2 J	2.8 J	3.9 J	2.4 J	5.9 J	5.1 J	8.2 J	5.9 J	5.4 J

Sample ID	30S00101	30S00201	30S00301	30\$00401	30S00501	30S00601	30\$00701	30S00801	30S00901	30S00901D
Lab ID	S776068*1	S776068*2	S776068*3	S776068*4	S776068*5	S776068*7	S776068*8	S776068*9	S776068*10	S776068*11
Sampling Date	23-Oct-97	23-Oct-97								
Beryllium	0.04 U	0.06 J	0.04 U	0.04 U	0.04 U	0.04 U				
Cadmium	0.12 U	0.12 U	0.13 U	0.12 U	0.12 U	0.21 J	0.12 U	0.12 U	0.12 U	0.12 U
Calcium	470 J	1080	1950	15500	2630	81200	2470	830 J	529 J	500 U
Chromium	1.1 J	0.41 U	0.61 J	1.2 J	0.48 J	4.5	1 J	1.7 J	0.76 J	0.81 J
Cobalt	0.2 U	0.2 U	0.21 U	0.2 U	0.2 U	0.21 U	0.2 U	0.2 U	0.2 U	0.2 U
Copper	1.7 J	1.8 J	3.2 J	2.4 J	1.8 J	2.5 J	1.4 J	1.6 J	1.2 J	1.3 J
Iron	314	125	114	241	81	577	202	83.8	190	200
Lead	7.7	5	4.4 J	4.4 J	5.7 J	4.1	5.3 J	6.2 J	24 J	24.8 J
Magnesium	14.3 U	22.2 U	33.7 U	182 U	33.7 J	809 J	60.4 U	23.4 U	32.4 U	45.5 U
Manganese	3.5	3.2	4.2	5.4	2.1 J	13	6.1	2.2 J	7	8.3
Mercury	0.02 U	0.02 U	0.02 U	0.03 U	0.02 U	0.02 U	0.03 J	80.0	0.02 U	0.02 U
Nickel	0.46 U	0.47 U	0.49 J	0.47 U	0.46 U	0.95 J	0.48 J	0.47 U	0.47 U	0.47 U
Potassium	37.3 U	27.7 U	25.6 U	26.9 U	22.1 U	47 U	36.6 U	24.1 U	24.9 U	22.9 U
Selenium	0.53 U	0.53 U	0.55 U	0.53 U	0.53 U	0.54 U	0.53 U	0.64 U	0.53 U	0.53 U
Silver	0.61 U	0.61 U	0.63 U	0.61 U	0.61 U	0.62 U	0.61 U	2.6	0.61 U	0.61 U
Sodium	63.3 UJ	66.5 UJ	56.6 UJ	34.8 UJ	53.9 UJ	81.8 UJ	50.4 UJ	59.6 UJ	52.7 UJ	32.2 UJ
Thallium	0.95 U	0.96 U	0.99 U	0.96 U	0.95 U	0.97 U	0.96 U	0.96 U	0.96 U	0.96 U
Vanadium	1 U	0.38 U	0.66 U	1.3 U	0.52 U	3.9 U	0.8 U	0.9 U	1.3 U	1.2 U
Zinc	4.2 U	8.1 U	561	9.4 U	32.7	5.5 U	6.8 U	9.8 U	25.2	24

Sample ID		305	01001		308011	01	308012	
Lab ID		*12	S776068*	12*D	S776068	*13	\$776068	3*14
Sampling Date	23-Oct-	97	23-Oct-	97	23-Oct-	97	23-Oct-	97
Volatile organics, ug/kg								
1,1,1-Trichloroethane	10	U	NA		10	U	11	U
1,1,2,2-Tetrachloroethane	10	U	NA		10		11	U
1,1,2-Trichloroethane	10	Ü	NA		10		11	U
1,1-Dichloroethane		U	NA		10		11	U
1,1-Dichloroethene		U	NA			U	11	U
1,2-Dichloroethane	10		NA			U	11	U
1,2-Dichloroethene (total)		U	NA			U	11	U
1,2-Dichloropropane	10	U	NA		10	Ü	11	U
2-Butanone		U	NA		10		11	U
2-Hexanone	10	U	NA			U	11	U
4-Methyl-2-pentanone	10		NA		10		11	U
Acetone	10		NA		10		11	IJ
Benzene	10		NA			U	11	U
Bromodichloromethane	10	U	NA		10		11	U
Bromoform	10	U	NA		10		11	_
Bromomethane		U	NA		10		11	U
Carbon disulfide			NA		10			U
Carbon tetrachloride		ט	NA		10		11	
Chlorobenzene		U	NA		10		11	U
Chloroethane	10	٦	NA.		10		11	U
Chloroform	10	U	NA		10		11	U
Chloromethane	10	د	NA		10	_	11	U
cis-1,3-Dichloropropene		J	NA		10		11	U
Dibromochloromethane	10		NA		10		11	
Ethylbenzene	10		NA			د	11	U
Methylene chloride	10		NA		10		11	U
Styrene	10		NA		10		11	U
Tetrachloroethene	10	U	NA		10		11	1
Toluene	10	_	NA		10		11	U
trans-1,3-Dichloropropene	10		NA		10		11	U
Trichloroethene	10		NA		10		11	U
Vinyl chloride	10	U	NA		10		11	
Xylene (total)	10	U	NA		10	U	11	U
Semivolatile organics, ug/kg								
1.2.4-Trichlorobenzene	340	U	NA		340	U	350	U

Sample ID			01001		308011	01	308012	201
Lab ID	S77606	3*12	S776068*1	12*D	S776068	3*13	S776068	3*14
Sampling Date	23-Oct	-97	23-Oct-	97	23-Oct-	97	23-Oct-	-97
1,2-Dichlorobenzene	340	U	NA		340	U	350	U
1,3-Dichlorobenzene	340	U	NA		340	U	350	U
1,4-Dichlorobenzene	340	U	NA		340	U	350	U
2,2'-oxybis(1-Chloropropane)	340	UJ	NA		340	UJ	350	UJ
2,4,5-Trichlorophenol	860		NA		860		880	_
2,4,6-Trichlorophenol	340	U	NA		340	U	350	U
2,4-Dichlorophenol	340	U	NA		340	U	350	U
2,4-Dimethylphenol	340	U	NA		340	U	350	U
2,4-Dinitrophenol	860		NA		860		880	
2,4-Dinitrotoluene	340	U	NA		340	U	350	U
2,6-Dinitrotoluene	340	U	NA		340	_	350	U
2-Chloronaphthalene	340	U	NA		340	U	350	U
2-Chlorophenol	340	U	NA		340	U	350	U
2-Methylnaphthalene	340	U	NA		340	U	350	U
2-Methylphenol	340	U	NA	-	340	U	350	Ų
2-Nitroaniline	860	U	NA		860		880	U
2-Nitrophenol	340	U	NA		340	U	350	U
3,3'-Dichlorobenzidine	340	U .	NA		340	U	350	U
3-Methylphenol/4-Methylphenol	340	U	NA		340	U	350	U
3-Nitroaniline	860	U	NA		860	U	880	U
4,6-Dinitro-2-methylphenol	860	UJ	NA		860	UJ	880	UJ
4-Bromophenyl-phenylether	340	U	NA		340	Ü	350	U
4-Chloro-3-methylphenol	340	Ų	NA		340	U	350	U
4-Chloroaniline	340	U	NA		340	U	350	U
4-Chlorophenyl-phenylether	340	U	NA		340	U	350	Ü
4-Nitroaniline	860	UJ	NA		860	UJ	880	UJ
4-Nitrophenol	860		NA		860	UJ	880	UJ
Acenaphthene	340	U	NA		340	U	350	U
Acenaphthylene	12	J	NA		10	J	7	J
Anthracene	340	U	NA		340	U	350	U
Benzo(a)anthracene	22	J	NA		24	J	24	
Benzo(a)pyrene	41	J	NA		38	J	34	J
Benzo(b)fluoranthene	71	J	NA	-	63	J	55	J
Benzo(g,h,i)perylene	29	J	NA			J	21	J
Benzo(k)fluoranthene	26	J	NA		22	J	19	J
bis(2-Chloroethoxy)methane	340	U	NA		340	Ū		U

Sample ID		3050	01001		30S011	01	30S01201		
Lab ID	S776068	3*12	S776068*	12*D	S776068	*13	S776068	3*14	
Sampling Date	23-Oct-	97	23-Oct-	97	23-Oct-	97	23-Oct-97		
bis(2-Chloroethyl)ether	340	U	NA		340	U	350	U	
bis(2-Ethylhexyl)phthalate	340	IJ	NA		340		350	UJ	
Butylbenzylphthalate	340	UJ	NA		340		51	J	
Carbazole	340	U	NA		340	U	350	U	
Chrysene	52	J	NA		42		40		
Di-n-butylphthalate	340		NA		340	IJ	350	UJ	
Di-n-octylphthalate	340		NA		340		350		
Dibenz(a,h)anthracene	340		NA			J	350	L	
Dibenzofuran	340		NA		340		350		
Diethylphthalate	340		NA		340		350		
Dimethylphthalate	340		NA		340		350		
Fluoranthene	41	I T	NA			J	44		
Fluorene	340	U	NA		340		350		
Hexachlorobenzene	340	U	NA		340		350		
Hexachlorobutadiene	340	U	NA		340	כ	350	1	
Hexachlorocyclopentadiene	340	U	NA		340		350		
Hexachloroethane	340	U	NA		340	U	350	-	
Indeno(1,2,3-cd)pyrene	31	I -	NA		33		26		
Isophorone	340	U	NA		340	•	350		
N-Nitroso-di-n-propylamine	340	I	NA		340		350		
N-Nitrosodiphenylamine	340	U	NA		340		350		
Naphthalene	340	U	NA		340	U	350		
Nitrobenzene	340	U	NA		340		350		
Pentachlorophenol	860	UJ	NA		860	UJ	880	IJ	
Phenanthrene	11	J	NA		9	J	11	L	
Phenol	340	U	NA		340		350	1	
Pyrene	54	J	NA		49	J	51	J	
Pesticides/PCBs, ug/kg									
4,4'-DDD	24		42	R	3.4	U	3.5		
4,4'-DDE	36		38	R	3.4		1.4		
4,4'-DDT	320	ER	520	1	0.66	J	1.7	L	
Aldrin	0.35	J	18	UR	1.8	U	1.8		
alpha-BHC	1.8	U	18	UR	1.8		1.8	U	
alpha-Chlordane	1.9		2.4	R	1.8	U	0.28	J	
Aroclor-1016	34	U	340	UR	34	U	35	U	
Aroclor-1221	70	U	700	UR	69	U	71	U	

Sample ID		30\$	01001	~~~~	30501	101	30S01201		
Lab ID	S77606	8*12	S776068*	12*D	S77606	8*13	S77606	8*14	
Sampling Date	23-Oct	-97	23-Oct	-97	23-Oct	-97	23-Oct	-97	
Aroclor-1232	34	U	340	UR	34	U	35	U	
Aroclor-1242	34	U	340	UR	34	U	35	U	
Aroclor-1248	34	U	340	UR	34	U	35	U	
Aroclor-1254	34	U	340	UR	34	U	35	U	
Aroclor-1260	34	U	340	UR	34	U	35	U	
beta-BHC	0.12	J	18	UR	1.8	U	0.32	J	
delta-BHC	1.8		18	UR	1.8	UJ	1.8	UJ	
Dieldrin	3.4		34	UR	0.13	J	0.2	J	
Endosulfan I	1.8	1	18	UR	1.8	U	1.8	U	
Endosulfan II	3.4	1	34	UR	3.4	U	3.5	U	
Endosulfan sulfate	3.7	J	1.8	R	3.4	U	1.2		
Endrin	3.4		34	UR	3.4	U	3.5	U	
Endrin aldehyde	3.4		34	UR	3.4	U	3.5	U	
Endrin ketone	1.2	I		UR	0.54	J	0.69	J	
gamma-BHC (Lindane)	1.8		18	UR	0.03	J	0.13	J	
gamma-Chlordane	1.2	J	1.4		0.14		0.2	J	
Heptachlor	0.14	L		UR	1.8	U	1.8	U	
Heptachlor epoxide	1.8	U		UR	1.8	U	1.8	U	
Methoxychlor	6.4		180	UR	18	U	18	U	
Toxaphene	180	U	1800	UR	180	C	180	U	
Herbicides, ug/kg									
2,4,5-T	8.6	1-	NA		8.6	U	8.8	U	
2,4,5-TP Silvex	8.6		NA		8.6	1 - 1	8.8	U	
2,4-D	8.6	U	NA		8.6	U	8.8	U	
2,4-DB	8.6	U	NA		3.7	I - I	7.5	J	
Dalapon	2100	U	NA		2100	U	2100	U	
Dicamba	21		NA		21	UJ	21	UJ	
Dichloroprop	100		NA		100	U	110	U	
Dinoseb	100		NA		100		110	UJ	
MCPA	2100		NA		2100	- 1	2100	U	
MCPP	1300	J	NA		2100	U	2100	U	
lnorganics, mg/kg									
Aluminum	421		NA		214		1040		
Antimony	0.69		NA		0.68	U	0.7	U	
Arsenic	0.75		NA		0.74	U	0.77	U	
Barium	10.1	J	NA		5.5	J	10.9	J	

Sample ID		308	01001		308011	01	305012	201	
Lab iD	S776068	3*12	S776068*	12*D	S776068	3*13	S776068	3*14	
Sampling Date	23-Oct	-97	23-Oct	-97	23-Oct	-97	23-Oct-97		
Beryllium	0.04	U	NA		0.04	U	0.04	U	
Cadmium	0.12	U	NA		0.12	U	0.2	J	
Calcium	4830		NA		11900		12100		
Chromium	1.2	J	NA		1.3	J	2.5		
Cobalt	0.21	U	NA		0.21	U	0.21	U	
Copper	1.6	J	NA		3.2	J	4.8	J	
Iron	131		NA		136		255		
Lead	51	J	NA		3.4	J	11.1	J	
Magnesium	64.3	U	NA		104	U	121	U	
Manganese	4		NA		4.7		7.3		
Mercury	0.03	J	NA		0.02	U	0.04	J	
Nickel	0.59	J	NA		0.47	U	0.75	J	
Potassium	30.7	U	NA		23.2	U	33.2	J	
Selenium	0.64	U	NA		0.54	U	0.55	U	
Silver	0.62	U	NA		0.62	U	0.64	U	
Sodium	60.1	UJ	NA		54.4	UJ	68.5	IJ	
Thallium	0.98	U	NA		0.97	U	1	٦	
Vanadium	1.3	U	NA		1.2	U	1.8	U	
Zinc	14		NA		8	U	13.9		

Sample ID	30B00101	30B0	0101D	30B00201	30B00301	30B00301D	30B00401	30B00501		00601	30B00701
Lab ID	S776068*15	S776068*6	S776068*6*R	S776201*13	S776201*14	S776201*21	S776201*23	S776068*1	S776068*17 S	S776068*17*D	S776068*18
Sampling Date	23-Oct-97	23-Oct-97	23-Oct-97	30-Oct-97	31-Oct-97	31-Oct-97	30-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97
Volatile organics, ug/kg											
1,1,1-Trichloroethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,1,2,2-Tetrachloroethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,1,2-Trichloroethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,1-Dichloroethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,1-Dichloroethene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,2-Dichloroethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,2-Dichloroethene (total)	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
1,2-Dichloropropane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
2-Butanone	11 U	11 U	NA	12 UJ	12 UJ	12 UJ	11 UJ	10 U	10 U	NA	11 U
2-Hexanone	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
4-Methyl-2-pentanone	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Acetone	11 UJ	11 U	NA	12 U	12 U	12 U	11 U	10 UJ	10 UJ	NA	11 UJ
Benzene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Bromodichloromethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Bromoform	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Bromomethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Carbon disulfide	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Carbon tetrachloride	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Chlorobenzene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Chloroethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Chloroform	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Chloromethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
cis-1,3-Dichloropropene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Dibromochloromethane	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Ethylbenzene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Methylene chloride	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Styrene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Tetrachloroethene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Toluene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
trans-1,3-Dichloropropene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Trichloroethene	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA ·	11 U
Vinyl chloride	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Xylene (total)	11 U	11 U	NA	12 U	12 U	12 U	11 U	10 U	10 U	NA	11 U
Semivolatile organics, ug/l	kg										

Sample ID	30B00101	30E	300101D	30B00201	30B00301	30B00301D	30B00401	30B00501	30B0	00601	30B00701
Lab ID	S776068*15	S776068*6	\$776068*6*R	S776201*13	S776201*14	S776201*21	S776201*23	S776068*1	S776068*17 S	S776068*17*D	S776068*18
Sampling Date	23-Oct-97	23-Oct-97	23-Oct-97	30-Oct-97	31-Oct-97	31-Oct-97	30-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97
1.2.4-Trichlorobenzene	360 U	360 UR	360 U	410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
1,2-Dichlorobenzene	360 U	360 UR	360 U	410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
1,3-Dichlorobenzene	360 U	360 UR	360 U	410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
1,4-Dichlorobenzene	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2,2'-oxybis(1-Chloropropane	360 UJ	360 UR		410 U	390 U	390 UJ	370 UJ	340 UJ	340 UJ	NA	370 UJ
2,4,5-Trichlorophenol	900 U	900 UR		1000 U	990 U	980 U	930 U	850 U	860 U	NA	930 U
2,4,6-Trichlorophenol	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2,4-Dichlorophenol	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2,4-Dimethylphenol	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2,4-Dinitrophenol	900 UJ	900 UR		1000 U	990 U	980 UJ	930 UJ	850 UJ	860 UJ	NA	930 UJ
2,4-Dinitrotoluene	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2,6-Dinitrotoluene	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA NA	370 U
2-Chloronaphthalene	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2-Chlorophenol	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
2-Methylnaphthalene	360 U	360 UR		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U 370 U
2-Methylphenol	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U	NA	
2-Nitroaniline	900 U	900 UF		1000 U	990 U	980 U	930 U	850 U	860 U	NA	930 U 370 U
2-Nitrophenol	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U	NA	370 U
3,3'-Dichlorobenzidine	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U	NA NA	370 U
3-Methylphenol/4-Methylphe	360 U	360 UF		410 U	390 U	390 U	370 UJ	340 U	340 U	NA NA	930 U
3-Nitroaniline	900 U	900 UF		1000 U	990 U	980 U	930 U	850 U	860 U	NA NA	930 UJ
4,6-Dinitro-2-methylphenol	900 UJ	900 UF		1000 U	990 U	980 UJ	930 UJ	850 UJ	860 UJ	NA NA	370 U
4-Bromophenyl-phenylether	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U		370 U
4-Chloro-3-methylphenol	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U	NA NA	370 U
4-Chloroaniline	360 U	360 UF		410 UJ	390 UJ	390 U	370 U	340 U	340 U	NA NA	370 U
4-Chlorophenyl-phenylether	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U 860 UJ	NA NA	930 UJ
4-Nitroaniline	900 N1	900 UF		1000 U	990 U	980 U	930 U	850 UJ		NA NA	930 UJ
4-Nitrophenol	900 UJ	900 UF		1000 U	990 U	980 UJ	930 UJ	850 UJ	860 UJ	NA NA	370 U
Acenaphthene	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U	NA NA	370 U
Acenaphthylene	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	340 U	NA NA	370 U
Anthracene	360 U	360 UF		410 U	390 U	390 U	370 U	340 U		NA NA	370 U
Benzo(a)anthracene	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	20 J	NA NA	370 U
Benzo(a)pyrene	360 U	360 UF		410 U	390 U	390 U	370 U	340 U	22 J 40 J	NA NA	370 U
Benzo(b)fluoranthene	360 U	360 UF		410 U	390 U	390 U	370 U	340 U		NA NA	370 U
Benzo(g,h,i)perylene	360 U	360 UF	360 U	410 U	390 U	390 U	370 U	340 U	13 J	NA NA	3/0 0

								1.38
Sample ID	30B00101	30B00101D	30B00201	30B00301	30B00301D	30B00401 30B00501	30B00601	30B00701
Lab ID	S776068*15	S776068*6 S776068*6*F	S776201*13	S776201*14	S776201*21	\$776201*23 \$776068*1	S776068*17 S776068*17*D	S776068*18
Sampling Date	23-Oct-97	23-Oct-97 23-Oct-97	30-Oct-97	31-Oct-97	31-Oct-97	30-Oct-97 24-Oct-97	24-Oct-97 24-Oct-97	24-Oct-97
Benzo(k)fluoranthene	360 U	360 UR 27 J	410 U	390 U	390 U	370 U 340 U	15 J NA	370 U
bis(2-Chloroethoxy)methane	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
bis(2-Chloroethyl)ether	360 U	360 UR 360 U	410 U	390 UJ	390 U	370 UJ 340 U	340 U NA	370 U
bis(2-Ethylhexyl)phthalate	360 UJ	360 UR 210 J	410 U	390 U	390 U	370 U 340 UJ	150 J NA	370 UJ
Butylbenzylphthalate	360 UJ	360 UR 360 U	410 U	390 U	390 U	370 U 340 UJ	340 UJ NA	370 UJ
Carbazole	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Chrysene	360 U	360 UR 33 J	410 U	390 U	390 U	370 U 340 U	32 J NA	370 U
Di-n-butylphthalate	360 UJ	360 UR 360 U	410 U	390 U	390 U	370 U 340 UJ	42 J NA	370 UJ
Di-n-octylphthalate	360 UJ	360 UR 360 U	410 U	390 U	390 U	370 U 340 UJ	340 UJ NA	370 UJ
Dibenz(a,h)anthracene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Dibenzofuran	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Diethylphthalate	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Dimethylphthalate	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Fluoranthene	360 U	360 UR 41 J	8 J	390 U	390 U	370 U 340 U	36 J NA	370 U
Fluorene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Hexachlorobenzene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Hexachlorobutadiene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Hexachlorocyclopentadiene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Hexachloroethane	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Indeno(1,2,3-cd)pyrene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	16 J NA	370 U
Isophorone	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
N-Nitroso-di-n-propylamine	360 U	360 UR 360 UJ	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
N-Nitrosodiphenylamine	360 U	360 UR 360 U	410 U	390 U	390 U	370 UJ 340 U	340 U NA	370 U
Naphthalene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Nitrobenzene	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Pentachlorophenol	900 UJ	900 UR 900 UJ	1000 U	990 U	980 UJ	930 UJ 850 UJ	860 UJ NA	930 UJ
Phenanthrene	360 U	360 UR 20 J	410 U	390 U	390 U	370 U 340 U	12 J NA	370 U
Phenol	360 U	360 UR 360 U	410 U	390 U	390 U	370 U 340 U	340 U NA	370 U
Pyrene	360 U	360 UR 57 J	410 U	390 U	390 U	370 U 340 U	43 J NA	370 U
Pesticides/PCBs, ug/kg								
4,4'-DDD	3.6 U	3.6 U NA	4.1 UJ	3.9 U	3.9 U	3.7 U 3.4 U	6.3 J 28 DR	3.7 U
4,4'-DDE	3.6 U	3.6 U NA	4.1 UJ	3.9 U	3.9 U	3.7 U 3.4 U	220 ER 200 D	3.7 U
4,4'-DDT	0.34 J	0.15 J NA	4.1 UJ	3.9 UJ	0.54 J	3.7 U 3.4 U	270 ER 270 DJ	3.7 UJ
Aldrin	1.8 U	1.8 U NA	2.1 UJ	0.09 J	0.05 J	1.9 U 1.7 U	1.8 U 18 UR	1.9 U
alpha-BHC	1.8 U	1.8 U NA	2.1 UJ	2 U	2 U	1.9 U 1.7 U	1.8 U 18 UR	1.9 U

Sample ID	30B00101		0101D	30B00201	30B00301	30B00301D	30B00401	30B00501	1	00601	30B00701
Lab ID	S776068*15	S776068*6	S776068*6*R	\$776201*13	S776201*14	\$776201*21	S776201*23	S776068*1	S776068*17	S776068*17*D	S776068*18
Sampling Date	23-Oct-97	23-Oct-97	23-Oct-97	30-Oct-97	31-Oct-97	31-Oct-97	30-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97
alpha-Chlordane	1.8 U	1.8 U	NA	2.1 UJ	2 UJ	0.07 J	1.9 U	1.7 U	26 ER	27 D	1.9 U
Aroclor-1016	36 U	36 U	NA	41 UJ	39 U	39 U	37 U	34 U	34 U	340 UR	37 U
Aroclor-1221	73 U	73 U	NA	83 UJ	80 U	79 U	75 U	68 U	69 U	690 UR	75 U
Aroclor-1232	36 U	36 U	NA	41 UJ	39 U	39 U	37 U	34 U	34 U	340 UR	37 U
Aroclor-1242	36 U	36 U	NA	41 UJ	39 U	39 U	37 U	34 U	34 U	340 UR	37 U
Aroclor-1248	36 U	36 U	NA	41 UJ	39 U	39 U	37 U	34 U	34 U	340 UR	37 U
Aroclor-1254	36 U	36 U	NA	41 UJ	39 U	39 U	37 U	34 U	34 U	340 UR	37 U
Aroclor-1260	36 U	36 U	NA	41 UJ	39 U	39 U	37 U	34 U	34 U	340 UR	37 U
beta-BHC	1.8 UJ	0.18 J	NA	2.1 UJ	2 UJ	2 U	1.9 U	1.7 U	0.12 J	18 UR	1.9 U
delta-BHC	1.8 UJ	1.8 U	NA	2.1 UJ	0.1 J	2 UJ	1.9 U	1.7 UJ	0.05 J	18 UR	1.9 UJ
Dieldrin	3.6 U	3.6 U	NA	4.1 UJ	2.3 J	2.7 J	3.7 U	3.4 U	3.4 U	34 UR	3.7 U
Endosulfan I	1.8 U	1.8 U	NA	2.1 UJ	2 U	2 U	1.9 U	1.7 U	1.8 U	18 UR	1.9 U
Endosulfan II	3.6 U	3.6 U	NA	4.1 UJ	3.9 U	3.9 U	3.7 U	3.4 U	3.4 U	34 UR	3.7 U
Endosulfan sulfate	3.6 U	3.6 U	NA	4.1 UJ	3.9 U	3.9 U	3.7 U	3.4 U	7.8 J	34 UR	3.7 U
Endrin	3.6 U	3.6 U	NA	4.1 UJ	3.9 U	3.9 U	3.7 U	3.4 U	3.4 U	34 UR	3.7 U
Endrin aldehyde	3.6 U	3.6 U	NA	4.1 UJ	3.9 U	3.9 U	3.7 U	3.4 U	3.4 U	34 UR	3.7 U
Endrin ketone	3.6 U	3.6 U	NA	0.18 J	0.95 J	3.9 UJ	3.7 U	0.49 J	1.4 J	34 UR	0.36 J
gamma-BHC (Lindane)	1.8 U	1.8 U	NA	2.1 UJ	2 U	2 U	1.9 U	1.7 U	0.16 J	18 UR	1.9 U
gamma-Chlordane	1.8 U	1.8 U	NA	2.1 UJ	2 UJ	0.11 J	1.9 U	1.7 U	27 ER	29 D	1.9 U
Heptachior	1.8 UJ	0.11 J	NA	2.1 UJ	2 UJ	0.07 J	0.09 J	1.7 U	0.44 J	18 UR	1.9 U
Heptachlor epoxide	1.8 U	1.8 U	NA	2.1 UJ	2 U	2 U	1.9 U	1.7 U	1.2 J	1.4 DR	1.9 U
Methoxychlor	18 UJ	18 U	NA	21 UJ	20 UJ	0.48 J	19 U	17 U	18 U	180 UR	19 U
Toxaphene	180 U	180 U	NA	210 UJ	200 U	200 U	190 U	170 U	180 U	1800 UR	190 U
Herbicides, ug/kg								·			
2,4,5-T	NA	NA	NA	NA	NA	NA	9.3 U	0.4 J	8.6 U	NA NA	9.3 U
2,4,5-TP Silvex	NA	NA	NA	NA	NA	NA	9.3 U	8.5 U	8.6 U	NA	9.3 U
2,4-D	NA	NA	NA	NA	NA	NA	9.3 U	8.5 U	8.6 U	NA	9.3 U
2,4-DB	NA	NA	NA	NA	NA	NA	9.3 U	8.5 U	8.6 U	NA	9.3 U
Dalapon	NA	NA	NA	NA	NA	NA	2200 U	2000 U	2100 U	NA NA	2200 U
Dicamba	NA	NA	NA	NA	NA	NA	22 U	20 UJ	21 UJ	NA	22 UJ
Dichloroprop	NA	NA	NA	NA	NA	NA	110 U	100 U	100 U	NA	110 U
Dinoseb	NA	NA	NA	NA	NA	NA	110 U	100 UJ	100 UJ	NA	110 UJ
MCPA	NA	NA	NA	NA	NA	NA	2200 U	2000 U	2100 U	NA	2200 U
MCPP	NA	NA	NA	NA	NA	NA	2200 U	2000 U	2100 U	NA	2200 U
Inorganics, mg/kg		LL									

· · ·											2.1
Sample ID	30B0010	30B	00101D	30B00201	30B00301	30B00301D	30B00401	30B00501		00601	30B00701
Lab ID	S776068*1	5 S776068*6	S776068*6*R	S776201*13	S776201*14	S776201*21	S776201*23	S776068*1	S776068*17	S776068*17*D	S776068*18
Sampling Date	23-Oct-97	23-Oct-97	23-Oct-97	30-Oct-97	31-Oct-97	31-Oct-97	30-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97	24-Oct-97
Aluminum	105	112	NA	415 J	224 J	247 J	205 J	19.1 U	975	NA	43.5 U
Antimony	0.72 U	0.72 U	NA	2.7 U	0.79 UJ	2.6 UJ	2.3 U	0.67 U	0.68 U	NA	0.74 U
Arsenic	0.78 U	0.78 U	NA	1.5 J	0.86 UJ	2.3 J	1.5 J	0.73 U	0.74 U	NA	0.81 U
Barium	0.42 U	0.44 U	NA	0.75 UJ	0.47 UJ	0.69 UJ	0.89 UJ	0.91 J	10.5 J	NA NA	0.9 U
Beryllium	0.04 U	0.04 U	NA	0.05 U	0.05 U	0.05 U	0.04 U	0.04 U	0.04 U	NA	0.04 U
Cadmium	0.13 U	0.13 U	NA	0.15 U	0.14 U	0.14 U	0.13 U	0.12 U	0.12 U	NA	0.13 U
Calcium	654 J	1120 J	NA	83.3 J	2940 J	1140 J	103 J	578 J	7770	NA	1550
Chromium	0.56 J	0.69 J	NA	2.5	1.8 J	2.3 J	2.2 J	0.41 U	4	NA	1.3 J
Cobalt	0.22 U	0.22 U	NA	0.89 J	0.3 J	1 J	0.73 J	0.2 U	0.21 U	NA	0.22 U
Copper	0.65 J	0.48 UJ	NA	0.63 J	0.52 U	0.52 U	0.74 J	0.45 U	1.4 J	NA	0.49 U
Iron	17.6 J	12.2 J	NA	16.9 J	25.1 J	22.4 J	17.6 J	7.2 U	1390	NA	13 J
Lead	0.59 J	1 J	NA	0.74 J	0.58 J	0.53 J	1.1 J	0.59 J	52.2 J	NA	4.6 J
Magnesium	20.7 J	16.8 U	NA	9.4 U	25 J	19.4 J	11.1 J	3.1 U	229 U	NA	13.4 U
Manganese	0.53 U	0.41 U	NA	0.44 J	0.51 U	0.44 U	0.38 U	0.35 U	55.1	NA .	0.64 U
Mercury	0.02 U	0.02 U	NA	0.03 U	0.03 U	0.03 U	0.03 J	0.03 U	0.04 J	NA	0.03 U
Nickel	0.5 U	0.5 U	NA	0.57 U	6 U	6.8 U	0.52 U	0.47 U	0.47 U	NA	0.52 U
Potassium	15.7 U	23.4 U	NA	13.3 U	12.9 U	12.7 U	12.8 U	11 U	46 U	NA	15.9 U
Selenium	0.57 U	0.57 U	NA	0.79 J	0.62 UJ	1.3 J	0.58 U	0.53 U	0.54 U	NA	0.93 U
Silver	0.65 U	0.65 U	NA	1.1 J	0.71 UJ	1.5 J	0.97 J	0.61 U	0.62 U	NA	0.67 U
Sodium	30 U	68.5 UJ	NA	49.9 UJ	63.1 UJ	49.6 UJ	40.2 UJ	31 UJ	90.1 UJ	NA	47.6 UJ
Thallium	1 U	1 U	NA	1.2 U	1.1 U	1.1 U	1.3 J	0.96 U	0.97 U	NA	1.1 U
Vanadium	0.76 U	0.66 U	NA	0.5 J	0.4 U	0.4 U	0.38 U	0.6 U	3.9 U	NA	0.38 U
Zinc	0.9 J	0.27 UJ	NA	0.22 UJ	0.43 UJ	0.38 UJ	0.35 UJ	0.2 J	71.3	NA	0.48 U
General Chemistry, mg/kg											
TRPH	10 U	NA	NA	13	28	NA	13	10 U	45	NA	10 U

NA =	Identified parameter not analyzed.
Sample	ID = Sample Identifier
Lab İD :	- Laboratory identifier
Units:	
mg/kg	milligram per kilogram
ug/kg	microgram per kilogram
mg/L	milligram per liter
ug/L	microgram per liter
	The following standard analytical data qualifiers have the following definitions:
U	The analyte/compound was analyzed for but was not detected above the reported sample quantitation limit
	The number preceding the U qualifier is the reported sample quantitation limit.
J	The analyte/compound was positively identified and the associated numerical value is an estimated concentration of the analyte/compound in the sample.
UJ	The analyte/compound was not detected above the reported sample quantitation limit.
	The reported quantitation limit, however, is approximate and may or may not represent the actual limit of quantitation
	necessary to accurately measure the analyte/compound in the sample.
R	The sample results are rejected during data validation because of serious deficiencies in meeting quality control
	criteria.
D	Reported concentration is from a dilution or reanalysis of the sample.

一一 如何我看到这个一里搬走了到江南的一家二家珍年。

TABLE E-2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

12,73,		1	· · · · · · · · · · · · · · · · · · ·	<u> </u>			1	 	T	<u> </u>	
Sample ID	30G00101	30G00201	30G00301	30G00301D	30G00401	30G00501	30G00601	30G00701	30G00801	30H00101	30H0
Lab ID	S776431*3	S776431*2	S776431*1	S776431*4	S776397*2	S776463*1	S776463*2	S776397*1	S776463*3	S776431*8	S7764
Sampling Date	12-Nov-97	12-Nov-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	12-Nov-97	12-No
Volatile organics, ug/L				1 1							12.11
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,2,4-Trichlorobenzene	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	NA	NA
1,2-Dibromo-3-chloropropane	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	1 UR	NA	NA
1,2-Dibromoethane (EDB)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
2-Butanone	5 UJ	5 UJ	5 UJ	5 UJ	5 U	5 UJ	5 UJ	5 U	5 UJ	NA	NA
2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NA	NA
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NA	NA
Acetone	5 UR	5 UR	5 UR	5 UR	5 UR	5 UR	5 UR	5 UR	5 UR	NA	NA
Benzene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Bromochloromethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Bromoform	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Bromomethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Carbon disulfide	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 UJ	1 UJ	1 U	1 UJ	NA	NA
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Chlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Chloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Chloroform	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Chloromethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Ethylbenzene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Methylene chloride	2 U	2 U	2 UJ	8 J	2 U	2 U	2 U	20	2 U	NA	NA
Styrene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Toluene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	.1 U	NA	NA
trans-1,2-Dichloroethylene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA

Naval Training Center, Orlando Orlando, FL

Sample ID	30G00101	30G00201	30G00301	30G00301D	30G00401	30G00501	30G00601	30G00701	30G00801	30H00101	30H0
Lab ID	S776431*3	S776431*2	S776431*1	S776431*4	S776397*2	S776463*1	S776463*2	S776397*1	S776463*3	S776431*8	S7764
Sampling Date	12-Nov-97	12-Nov-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	12-Nov-97	12-No
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Trichloroethene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Vinyl chloride	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Xyiene (total)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
Semivolatile organics, ug/L											
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 <u>U</u>	1 U	NA	NA
2,2'-oxybis(1-Chloropropane)	10 U	10 U	NA	NA							
2,4,5-Trichlorophenol	25 U	25 U	NA	NA							
2,4,6-Trichlorophenol	10 U	10 U	NA	NA							
2,4-Dichlorophenol	10 U	10 U	NA	NA							
2,4-Dimethylphenol	10 U	10 U	NA	NA							
2,4-Dinitrophenol	25 UJ	25 UJ	NA	NA							
2,4-Dinitrotoluene	10 U	10 U	NA	NA							
2,6-Dinitrotoluene	10 U	10 U	NA	NA							
2-Chloronaphthalene	10 U	10 U	NA	NA							
2-Chlorophenol	10 U	10 U	NA	NA							
2-Methylnaphthalene	10 U	10 U	NA	NA							
2-Methylphenol	10 U	10 U	NA	NA							
2-Nitroaniline	25 U	25 U	NA	NA							
2-Nitrophenol	10 U	10 U	NA	NA							
3,3'-Dichlorobenzidine	10 U	10 U	NA	NA							
3-Methylphenol/4-Methylphenol	10 U	10 U	NA	NA							
3-Nitroaniline	25 U	25 U	NA	NA							
4,6-Dinitro-2-methylphenol	25 U	25 U	NA	NA							
4-Bromophenyl-phenylether	10 U	10 U	NA	NA							
4-Chloro-3-methylphenol	10 U	10 U	NA	NA							
4-Chloroaniline	10 U	10 U	NA	NA							
4-Chlorophenyl-phenylether	10 U	10 U	NA	NA							
4-Nitroaniline	25 U	25 U	NA	NA							
4-Nitrophenol	25 U	25 U	NA	NA							
Acenaphthene	10 U	10 U	NA	NA							
Acenaphthylene	10 U	10 U	NA	NA							
Anthracene	10 U	10 U	NA	NA							

Page 2 (30.XLS 4/15/98

\$2.50.										· · · · · · · · · · · · · · · · · · ·	
Sample ID	30G00101	30G00201	30G00301	30G00301D	30G00401	30G00501	30G00601	30G00701	30G00801	30H00101	30H0
Lab ID	\$776431*3	S776431*2	S776431*1	S776431*4	S776397*2	S776463*1	S776463*2	S776397*1	S776463*3	S776431*8	S7764
Sampling Date	12-Nov-97	12-Nov-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	12-Nov-97	12-No
Benzo(a)anthracene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Benzo(a)pyrene	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	NA	NA
Benzo(b)fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	NA	NA
Benzo(g,h,i)perylene	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	NA	NA
Benzo(k)fluoranthene	10 U	10 U	10 U	. 10 U	10 U	10 U	10 UJ	10 U	10 U	NA	NA
bis(2-Chloroethoxy)methane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
bis(2-Chloroethyl)ether	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	.NA
bis(2-Ethylhexyl)phthalate	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	NA	NA
Butylbenzylphthalate	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	NA	NA
Carbazole	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Chrysene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Di-n-butylphthalate	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	NA	NA
Di-n-octylphthalate	10 U	10 U	10 U	10 U	10 Ü	10 U	10 UJ	10 U	10 U	NA	NA
Dibenz(a,h)anthracene	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	NA	NA
Dibenzofuran	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Diethylphthalate	1 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Dimethylphthalate	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Fluorene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Hexachlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Hexachlorobutadiene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Hexachlorocyclopentadiene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA
Hexachloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA	NA NA
Indeno(1,2,3-cd)pyrene	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	NA	NA NA
Isophorone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA NA	
N-Nitroso-di-n-propylamine	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA NA	NA NA
N-Nitrosodiphenylamine	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U 10 U	10 U	NA NA	NA NA
Naphthalene	10 U	10 U	10 U	10 U	10 U	10 U	10 U				NA NA
Nitrobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U 25 U	10 U 25 U	10 U 25 U	NA NA	
Pentachlorophenol	25 U	25 U	25 U	25 U	25 U 10 U	25 U 10 U	10 U	10 U	10 U	NA NA	NA NA
Phenanthrene	10 U	10 U	10 U	10 U			10 U	10 U	10 U	NA NA	NA NA
Phenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NA NA	NA NA
Pyrene	10 U	10 U	10 U	10 U	10 U	10 U	100	10 0	10 0	NA	NA
Pesticides/PCBs, ug/L				0.4		0.4.11					100
4,4'-DDD	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA NA	NA.

[r			1		T			1		
Sample ID	30G00101	30G00201	30G00301	30G00301D	30G00401	30G00501	30G00601	30G00701	30G00801	30H00101	30H0
Lab ID	S776431*3	S776431*2	S776431*1	\$776431*4	S776397*2	S776463*1	S776463*2	S776397*1	S776463*3	\$776431*8	S7764
Sampling Date	12-Nov-97	12-Nov-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	12-Nov-97	12-No
4,4'-DDE	0.1 UJ	0.0016 J	0.1 U	0.1 UJ	0.0016 J	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
4,4'-DDT	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
Aldrin	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
alpha-BHC	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
alpha-Chlordane	0.0024 J	0.05 UJ	0.05 UJ	0.05 UJ	0.0022 J	0.0015 J	0.05 UJ	0.05 U	0.05 UJ	NA	NA
Aroclor-1016	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	NA	NA
Aroclor-1221	2 UJ	2 UJ	2 UJ	2 UJ	2 U	2 U	2 UJ	2 U	2 UJ	NA	NA
Aroclor-1232	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	NA	NA
Aroclor-1242	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	NA	NA
Aroclor-1248	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	NA	NA
Aroclor-1254	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	NA	NA
Aroclor-1260	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	NA	NA
beta-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
delta-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
Dieldrin	0.1 UJ	0.1 U	0.011 J	0.01 J	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
Endosulfan I	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
Endosulfan II	0.1 UJ	0.1 UJ	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
Endosulfan sulfate	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
Endrin	0.1 UJ	0.1 UJ	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
Endrin aldehyde	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 UJ	NA	NA
Endrin ketone	0.1 UJ	0.0029 J	0.0028 J	0.1 UJ	0.1 U	0.0043 J	0.1 UJ	0.1 U	0.0038 J	NA	NA
gamma-BHC (Lindane)	0.0043 J	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.0065 J	0.05 U	0.0049 J	NA	NA
gamma-Chlordane	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.0055 J	0.05 U	0.0029 J	0.05 U	0.05 UJ	NA	NA
Heptachlor	0.05 UJ	0.05 U	0,05 U	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
Heptachlor epoxide	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 UJ	NA	NA
Methoxychlor	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	NA	NA
Toxaphene	5 UJ	5 UJ	5 UJ	5 UJ	5 U	5 U	5 UJ	5 U	5 UJ	NA	NA
Herbicides, ug/L											
2,4,5-T	NA	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
2,4,5-TP Silvex	NA	NA	NA .	NA	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
2,4-D	NA	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
2,4-DB	NA	NA	NA	NA .	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
Dalapon	NA	NA	NA	NA	120 U	120 U	120 U	120 U	NA	NA	NA
Dicamba	NA	NA	NA	NA	1.2 U	1.2 U	1.2 U	1.2 U	NA	NA	NA
Dichloroprop	NA	NA	NA	NA	6 U	6 U	6 U	6 U	NA	NA	NA

一五年級公司令者以第二年刊等 大城公司職 等的品面量

Appendix E Table E-2. Summary of Groundwater Analytical Results Study Area 30

Sample ID	30G00101	30G00201	30G00301	30G00301D	30G00401	30G00501	30G00601	30G00701	30G00801	30H00101	30H0
Lab ID	S776431*3	S776431*2	S776431*1	S776431*4	S776397*2	S776463*1	S776463*2	S776397*1	S776463*3	S776431*8	S7764
Sampling Date	12-Nov-97	12-Nov-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	12-Nov-97	12-No
Dinoseb	NA	NA	NA	NA	6 U	6 U	6 U	6 U	NA	NA	NA
MCPA	NA	NA	NA	NA	120 U	120 U	120 U	120 U	NA	NA	NA
MCPP	NA	NA	NA	NA	120 U	120 U	120 U	120 U	NA	NA	NA
Inorganics, ug/L											
Aluminum	4130	451	1120	1130	443	350	1930	264	401	516	276
Antimony	3.3 U	3.3 U	3.8 J	3.3 UJ	3.3 U	3.7					
Arsenic	3.6 U	5 J	3.6 U	3.6 U	3.6						
Barium	26.1 J	5.6 U	11.2 U	11.3 U	4.3 U	9.2 U	34.6 J	9.7 U	5 U	12.6 U	5.1
Beryllium	0.29 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2
Cadmium	0.6 U	0.6									
Calcium	2380 J	41300	62900	63100	57900	38000	20800	37100	25800	1930 J	40300
Chromium	9.9 U	3 U	113 J	2.9 UJ	2.6 U	6.5 U	20.2 U	2.2 U	3 U	6.4 UJ	392
Cobait	1.2 J	1 U	3.5 J	1 UJ	1 U	1 U	1.9 J	1 U	1 U	1 U	7.1
Copper	8.3 J	2.2 U	5.2 J	2.5 J	2.7 J	3.6 J	6.9 J	2.2 U	3.9 J	2.2 U	7.2
Iron	958	46.9 U	597 J	139 UJ	35.3 U	58 U	133	76.5 U	299	742 J	1740
Lead	6.3	1.2 U	1.2 U	1.2 U	1.2 U	1.6 J	7.7	1.2 U	1.2 U	1.2 U	1.2
Magnesium	1430 J	1660 J	2140 J	2140 J	2640 J	1720 J	2620 J	2330 J	1830 J	1320 J	1630
Manganese	4.6 U	1.6 U	34.1 J	4.1 UJ	1.2 U	8.9 U	10.2 U	1.1 U	4.8 U	5.2 UJ	86.8
Mercury	0.22	0.1 U	0.15								
Nickel	2.9 U	2.7 U	151 J	2.3 UJ	2.3 U	40.1 U	48.6	2.3 U	9.5 U	8.5 UJ	435
Potassium	267 U	3270 J	12400	12800	7730	970 J	3620 J	1370 J	22300	271 U	3310
Selenium	2.7 J	2.6 J	2.6 U	2.6 U	4.4 J	2.6 U	2.6				
Silver	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3
Sodium	3580 J	7460	11100	11000	8150	11500	9560	13200	14900	3730 J	8950
Thallium	4.7 U	4.7									
Vanadium	9.9 U	4.6 U	7.9 J	8.5 U	4.1 U	1.7 U	7.6 U	1.7 U	1.7 U	1.7 U	5.8
Zinc	4.1 U	3.2 U	11.1 UJ	3.4 UJ	5.5 U	55.8	30.3	4.4 U	13 U	6.9 U	14.4
General Chemistry, mg/L											
Suspended Solids	150	5 U	7	6	5 U	5 U	5	5 U	5 U	NA	NA
TRPH	1 U	1 U	1 U	NA	1 U	1 U	1 U	1 U	1 U	NA	NA

Sample ID	201	30H00301	30H00301D	30H00401	30H00501	30H00601	30H00701	30H00801	
Lab ID	1*7 S776431*5		S776431*6	S776397*4	S776463*6	S776463*7	S776397*3	S776463*5	
Sampling Date	-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	
Volatile organics, ug/L									
1,1,1-Trichloroethane		NA							
1,1,2,2-Tetrachloroethane		NA NA	NA	NA	NA	NA	NA NA	NA	
1,1,2-Trichloroethane		NA							
1.1-Dichloroethane		NA							
1,1-Dichloroethene		NA							
1.2.4-Trichlorobenzene		NA							
1,2-Dibromo-3-chloropropane		NA							
1,2-Dibromoethane (EDB)		NA							
1,2-Dichloroethane		NA							
1,2-Dichloropropane		NA							
2-Butanone		NA							
2-Hexanone		NA							
4-Methyl-2-pentanone		NA							
Acetone		NA							
Benzene		NA							
Bromochloromethane		NA							
Bromodichloromethane		NA							
Bromoform		NA							
Bromomethane		NA							
Carbon disulfide		NA							
Carbon tetrachloride		NA							
Chlorobenzene		NA							
Chioroethane		NA							
Chloroform		NA							
Chloromethane		NA							
cis-1,2-Dichloroethene		NA							
cis-1,3-Dichloropropene		NA							
Dibromochloromethane		NA							
Ethylbenzene		NA							
Methylene chloride	l	NA							
Styrene	—	NA							
Tetrachloroethene		NA NA	NA NA	NA	NA	NA	NA	NA	
Toluene	 	NA							
trans-1,2-Dichloroethylene		NA NA	NA	NA NA	NA	NA	NA	NA	

Sample ID		30H00301	30H00301D	30H00401	30H00501	30H00601	30H00701	30H00801	
Lab ID	1	S776431*5	S776431*6	\$776397*4	S776463*6	S776463*7	S776397*3	S776463*5 13-Nov-97	
Sampling Date	-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97		
trans-1,3-Dichloropropene		NA	NA	NA	NA	NA	NA	NA	
Trichloroethene	L	NA NA	NA	NA	NA	NA	NA	NA	
Vinyl chloride		NA	NA	NA	NA	NA	NA	NA	
Xylene (total)		NA	NA	NA	NA	NA	NA	NA	
Semivolatile organics, ug/L									
1,2-Dichlorobenzene		NA	NA	NA	NA	NA	NA	NA	
1,3-Dichlorobenzene		NA	NA	NA	NA	NA	NA	NA	
1,4-Dichlorobenzene		NA	NA	NA	NA	NA	NA	NA	
2,2'-oxybis(1-Chloropropane)		NA	NA	NA	NA	NA	NA	NA	
2,4,5-Trichlorophenol		NA	NA	NA	NA	NA	NA	NA	
2,4,6-Trichlorophenol		NA	NA	NA	NA	NA	NA	NA	
2,4-Dichlorophenol		NA	NA	NA	NA	NA	NA	NA	
2,4-Dimethylphenol		NA	NA	NA	NA	NA	NA	NA	
2,4-Dinitrophenol		NA	NA	NA	NA	NA	NA	NA	
2,4-Dinitrotoluene		NA	NA	NA	NA	NA	NA	NA	
2,6-Dinitrotoluene		NA	NA	NA	NA	NA	NA	NA	
2-Chloronaphthalene		NA	NA	NA	NA	NA	NA	NA	
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	
2-Methylnaphthalene		NA	NA	NA	NA	NA	NA	NA	
2-Methylphenol		NA	NA	NA -	NA	NA	NA	NA	
2-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	
2-Nitrophenol		NA	NA	NA	NA	NA	NA	NA	
3,3'-Dichlorobenzidine		NA	NA	NA	NA	NA	NA	NA	
3-Methylphenol/4-Methylphenol		NA	NA	NA	NA	NA	NA	NA	
3-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	
4,6-Dinitro-2-methylphenol		NA	NA	NA	NA	NA	NA	NA	
4-Bromophenyl-phenylether		NA	NA	NA	NA	NA	NA	NA	
4-Chloro-3-methylphenol		NA	NA	NA	NA	NA	NA	NA	
4-Chloroaniline		NA	NA	NA	NA	NA	NA	NA	
4-Chlorophenyl-phenylether		NA	NA	NA	NA	NA	NA	NA	
4-Nitroaniline		NA	NA	NA	NA	NA	NA	NA	
4-Nitrophenol		NA	NA	NA .	NA	NA	NA	NA	
Acenaphthene		NA	NA	NA	NA	NA	NA	NA	
Acenaphthylene		NA	NA	NA	NA	NA	NA	NA	
Anthracene		NA	NA	NA	NA	NA	NA	NA	

Sample ID	201 30H00301	30H00301D	30H00401	30H00501	30H00601	30H00701	30H00801
	1*7 S776431*5	S776431*6	S776397*4	S776463*6	S776463*7	S776397*3	S776463*5
	-97 12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97
Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroethoxy)methane	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroethyl)ether	NA	NA	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	NA	NA	NA	NA	NA	NA	NA
Carbazole	NA	NA	NA	NA	NA	NA	NA
Chrysene	NA	NA	NA	NA	NA	NA	NA
Di-n-butylphthalate	NA	NA	NA	NA	NA	NA	NA
Di-n-octylphthalate	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	NA	NA	NA	NA	NA	NA	NA
Dimethylphthalate	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA
Hexachlorobenzene	NA	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	NA	NA	NA	NA	NA	NA	NA
Hexachloroethane	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	NA	NA	NA	NA	NA	NA	NA
Isophorone	NA	NA	NA	NA	NA	NA	NA
N-Nitroso-di-n-propylamine	NA	NA	NA	NA	NA	NA	NA
N-Nitrosodiphenylamine	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA
Nitrobenzene	NA	NA	NA	NA	NA	NA	NA
Pentachlorophenol	NA	NA ·	NA	NA	NA	NA	NA
Phenanthrene	NA	NA	NA	NA	NA	NA	NA
Phenol	NA	NA	NA	NA	NA	NA	NA
Pvrene	NA	NA	NA	NA	NA	NA	NA
Pesticides/PCBs, ug/L							
4,4'-DDD	NA	NA	NA	NA	NA	NA	NA

Sample ID	201	30H00301	30H00301D	30H00401	30H00501	30H00601	30H00701	30H00801	
Lab ID	1*7	S776431*5	S776431*6	S776397*4	S776463*6	S776463*7	S776397*3	S776463*5	
Sampling Date	-97	12-Nov-97	12-Nov-97	11-Nov-97	13-Nov-97	13-Nov-97	11-Nov-97	13-Nov-97	
4,4'-DDE		NA							
4,4'-DDT		NA							
Aldrin		NA							
alpha-BHC		NA							
alpha-Chlordane		NA							
Aroclor-1016		NA							
Aroclor-1221		NA							
Aroclor-1232		NA							
Aroclor-1242		NA							
Aroclor-1248		NA							
Aroclor-1254		NA							
Aroclor-1260		NA							
beta-BHC		NA							
delta-BHC		NA							
Dieldrin		NA							
Endosulfan I		NA							
Endosulfan II		NA							
Endosulfan sulfate		NA							
Endrin		NA	NA	NA	NA NA	NA	NA	NA	
Endrin aldehyde		NA							
Endrin ketone		NA							
gamma-BHC (Lindane)		NA							
gamma-Chlordane		NA							
Heptachlor		NA							
Heptachlor epoxide		NA							
Methoxychlor		NA							
Toxaphene		NA							
Herbicides, ug/L									
2,4,5-T		NA							
2,4,5-TP Silvex		NA	NA .	NA	NA	NA	NA	NA	
2,4-D		NA							
2,4-DB		NA							
Dalapon		NA							
Dicamba		NA							
Dichloroprop		NA							

Sample ID		30H00		30H00		30H00		30H00	501	30H00601		30H00	0701	30H00	0801
Lab ID		S776431*5		S776431*6		S776397*4		S776463*6		S776463*7		S776397*3		S776463*5	
Sampling Date	-97	12-No	v-97	12-No	v-97	11-No	v-97	13-No	v-97	13-No	v-97	11-No	v-97	13-No	v-97
Dinoseb		NA		NA		NA		NA		NA		NA		NA	
MCPA		NA		NA		NA		NA		NA		NA		NA	
MCPP		NA		NA		NA		NA		NA		NA		NA	
Inorganics, ug/L															1
Aluminum		739		714		117	J	71.8	J	376		128	J	291	
Antimony	J	3.5		1	UJ	3.8	J	3.3		3.3	U	3.3	U	3.3	U
Arsenic	U	3.6	U	3.6	U	3.6		3.6	U	3.6	U	3.8	J	3.6	U
Barium	U	10.4	U	10.2	U	2.7	U		U	5.5		8.2	U	4.1	U
Beryllium	U	0.2	U	0.21		0.2	U	0.2	J	0.2	U	0.2		0.2	Ū
Cadmium	U	0.6	U	0.6	U	0.6	U	0.6	J	0.6	U	0.6	U	0.6	U
Calcium		60600		59600		56300		38700		18600		36300		24500	
Chromium	J	51.7	J	31.2	UJ	2	UJ	10.2	UJ	14	UJ	2	UJ	7.8	UJ
Cobalt	J	2	J	1.1	J	1	U	1	U	1	U	1	U	1	U
Copper	J	3.8	J	2.8	J	2.2	ב	2.6	J	2.2	J	2.2	U	2.7	J
Iron	J	361	-	337	J	35.3	UJ	54.9	J	75.2	UJ	58	UJ	288	IJ
Lead	U	1.2		1.2	U	1.2	-	1.2		1.5	J	1.2	U	1.2	U
Magnesium	J	2170	J	2140	J	2620	J	1750	J	2370	j	2270	j	1770	J
Manganese	J	19.4	J	10.6	UJ	1.4	3	3.9	UJ	5.7	UJ	0.85	UJ	5.7	UJ
Mercury	J	0.1	_		U	0.1	U								
Nickel	J	85.6	J	34.3	UJ	2.3	IJ	18.3	UJ	22.8	UJ	2.3	UJ	14.3	UJ
Potassium	J	11600		11300		7480		916	J	3390	J	1330	J	23000	
Selenium	U	2.6	U	2.6	U	3.1	J	2.6	U	2.6	U	2.6	U	2.6	U
Silver	U	3	U	3	U	3	U	3	U	3	U	3	U	3	U
Sodium		11700		11600		8180		12400		9380		13000		14900	
Thallium	U	4.7	U	4.7	U	4.7	U	4.7	U	4.7	U	4.7	U	4.7	U
Vanadium	U	7.1	U	6.7	U	4.1	Ū	1.7	U	3.1	U	1.7	U	1.7	U
Zinc	U	5.4	U	4.1	U	4.2	U	5.2	U	7	U	3.6	U	4.5	U
General Chemistry, mg/L															
Suspended Solids		NA		NA		NA		NA		NA		NA		NA	
TRPH		NA		NA		NA		NA	-	NA		NA		NA	

NA =	Identified parameter not analyzed.
Sample	ID = Sample Identifier
Lab ID	= Laboratory identifier
Units:	·
mg/kg	milligram per kilogram
ug/kg	microgram per kilogram
mg/L	milligram per liter
ug/L	microgram per liter
	The following standard analytical data qualifiers have the following definitions:
U	The analyte/compound was analyzed for but was not detected above the reported sample quantitation limit
	The number preceding the U qualifier is the reported sample quantitation limit.
j	The analyte/compound was positively identified and the associated numerical value is an estimated concentration of the analyte/compound in the sample.
UJ	The analyte/compound was not detected above the reported sample quantitation limit.
	The reported quantitation limit, however, is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte/compound in the sample.
R	The sample results are rejected during data validation because of serious deficiencies in meeting quality control criteria.
D	Reported concentration is from a dilution or reanalysis of the sample.